
题二:求函数y=(2x^2-2x+3)/(x^2-x+1) 的值域。
1个回答
展开全部
y=(2x²-2x+2+1)/(x²-x+1)
=(2x²-2x+2)/(x²-x+1)+1/(x²-x+1)
=2+1/(x²-x+1)
x²-x+1=(x-1/2)²+3/4>=3/4
所以0<1/(x²-x+1)<=4/3
2<2+1/(x²-x+1)<=10/3
值域(2,10/3]
=(2x²-2x+2)/(x²-x+1)+1/(x²-x+1)
=2+1/(x²-x+1)
x²-x+1=(x-1/2)²+3/4>=3/4
所以0<1/(x²-x+1)<=4/3
2<2+1/(x²-x+1)<=10/3
值域(2,10/3]
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询