多元函数取极值的条件是什么?
展开全部
各个分量的偏导数为0,这是一个必要条件。充分条件是这个多元函数的二阶偏导数的行列式为正定或负定的。如果这个多元函数的二阶偏导数的行列式是半正定的则需要进一步判断三阶行列式。如果这个多元函数的二阶偏导数的行列式是不定的,那么这时不是极值点。
以二元函数为例,设函数z=f(x,y)在点(x。,y。)的某邻域内有连续且有一阶及二阶连续偏导数,又fx(x。,y。),fy(x。,y。)=0,令
fxx(x。,y。)=A,fxy=(x。,y。)=B,fyy=(x。,y。)=C
则f(x,y)在(x。,y。)处是否取得极值的条件是
(1)AC-B*B>0时有极值
(2)AC-B*B<0时没有极值
(3)AC-B*B=0时可能有极值,也有可能没有极值
如果是n元函数需要用行列式表示。估计你也没学行列式呢。
如果是条件极值,那么更复杂一些。
大一的时候数学分析讲的,网上不好找到教材,建议你看一下大学课本。
如果需要我可以发给你pdf。
以二元函数为例,设函数z=f(x,y)在点(x。,y。)的某邻域内有连续且有一阶及二阶连续偏导数,又fx(x。,y。),fy(x。,y。)=0,令
fxx(x。,y。)=A,fxy=(x。,y。)=B,fyy=(x。,y。)=C
则f(x,y)在(x。,y。)处是否取得极值的条件是
(1)AC-B*B>0时有极值
(2)AC-B*B<0时没有极值
(3)AC-B*B=0时可能有极值,也有可能没有极值
如果是n元函数需要用行列式表示。估计你也没学行列式呢。
如果是条件极值,那么更复杂一些。
大一的时候数学分析讲的,网上不好找到教材,建议你看一下大学课本。
如果需要我可以发给你pdf。
展开全部
设函数z=f(x,y)在点(x.,y.)的某邻域内有连续且有一阶及二阶连续偏导数,又fx(x.,y.),fy(x.,y.)=0,令fxx(x.,y.)=A,fxy=(x.,y.)=B,fyy=(x.,y.)=C则f(x,y)在(x.,y.)处是否取得极值的条件是(1)AC-B*B>0时有极值(2)AC-B*B
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在实际应用问题中,这样做就可以了,
如果给定一个函数,还要求出偏导数不存在的点,也有可能是极值点,
如果还要求最值,在求出函数在边界处的值进行比较
如果给定一个函数,还要求出偏导数不存在的点,也有可能是极值点,
如果还要求最值,在求出函数在边界处的值进行比较
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询