求解一道数学题,急

已知数列{an}的前n项和为Sn,且满足Sn+n=2an,(n属于正整数)[n为下标](1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;若bn=(2n+... 已知数列{an}的前n项和为Sn,且满足Sn+n=2an,(n属于正整数)[n为下标]
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;
若bn=(2n+1)an+2n+1,数列{bn}的前n项和为Tn,求满足不等式(Tn-2)/(2n-1)>2010的最小n值。
能做多少算多少,谢谢各位高人。
展开
小鱼1979117
2011-02-06 · TA获得超过1.1万个赞
知道大有可为答主
回答量:1905
采纳率:0%
帮助的人:1095万
展开全部
(1)
因为Sn = 2An - n
所以通项公式:An = Sn - S(n-1) = 2An - n - 2A(n-1) + n - 1 = 2An - 2A(n-1) - 1
所以An = 2A(n-1) - 1。
又因为A(1) = S(1) = 2A(1) - 1,所以A1 = 1,
因此An = 2^n-1
这就是数列{an}的通项公式。
新数列的An = an+1 = 2a(n-1),所以是一个以2为公比的等比数列。

[2]
an带入bn得到:
Bn = N*2^(N+1) + 2^N
先求左边的,假设m(n) = N*2^(N+1) ,前n项和是M(n)
Mn = 2*Mn - Mn
= 求和(n*2^(n+2)) - 求和(n*2^(n+1))
【这时会发现其实就是2Mn的最后一项减去一个大等比数列】
= n*2^(n+2) - 2^(n+2) + 4
= (n-1) * 2^(n+2) + 4

再求刚才右边的2^n,等比数列求和,很好求。
Bn的两边都解决完了,
所以
Tn = (n-1) * 2^(n+2) + 4 + 2^(n+1) - 2
= (2n-1)2^(n+1) + 2

所以(Tn-2)/(2n-1)实际上就是2^(n+1)
枚举都可以了,2,4,8,...,1024,2048
2^11的时候刚好>2010,所以n的最小值是10.
笑年1977
2011-02-06 · TA获得超过7.2万个赞
知道大有可为答主
回答量:2.2万
采纳率:81%
帮助的人:1.2亿
展开全部
Sn+n=2an
S(n-1)+n-1=2a(n-1)
Sn-S(n-1)+n-(n-1)=2an-2a(n-1)
an+1=2an-2a(n-1)
an=2a(n-1)+1
an+1=2a(n-1)+2=2(a(n-1)+1)
(an+1)/(a(n-1)+1)=2
所以数列{an+1}为等比数列
S1+1=2a1
a1+1=2a1
a1=1
a1+1=1+1=2
an+1=(a1+1)q^(n-1)
=2*2^(n-1)=2^n
an=2^n-1

bn=(2n+1)(2^n-1)+2n+1
=(2n+1)2^n-(2n+1)+2n+1
=(2n+1)2^n
=2n*2^n+2^n
=n*2^(n+1)+2^n
唉,Tn解错了,实在不好意思了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
猪猪爱上睡觉觉
2011-02-06 · 超过10用户采纳过TA的回答
知道答主
回答量:132
采纳率:0%
帮助的人:32.8万
展开全部
答得好
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式