几道初三数学题

1、若抛物线=ax2+bx+y3与y=-x2+3x+2的两交点关于原点对称,则a,b分别为______2、已知二次函数y=ax2+bx+c的图像与x轴交于点(-2,0),... 1、若抛物线=ax2+bx+ y3与y=-x2+3x+2的两交点关于原点对称,则a,b分别为______
2、已知二次函数y=ax2+bx+c的图像与x轴交于点(-2,0),(x1,0)且1<x1<2,与y轴的交点在(0,2)的下方。下列结论(1)4a-2b+c=0(2)a<b<0(3)2a+c>0(4)2a-b+1>0.其中正确的结论有————个
还有问下π/2算不算无理数?
展开
雪莉de心
2011-02-06 · TA获得超过778个赞
知道答主
回答量:84
采纳率:0%
帮助的人:0
展开全部
1.
解:让第一个式子减去第二个式子得:(a+1)x2+(b-3)x+1=0.
∵两交点关于原点对称,那么两个横坐标的值互为相反数;两个纵坐标的值也互为相反数.
则两根之和为:- b-3a+1=0,两根之积为 1a+1.解得b=3,a≠-1.
设两个交点坐标为(x1,y1),(x2,y2) .这两个根都适合第二个函数解析式,那么y1+y2=-(x12+x22)+3 (x1+x2)+4,
那么-x(1+x22)+2x1x2+4=0,解得x1x2=-2.代入两根之积得a=- 32,故a=- 32,b=3.
2.
解:∵图象与x轴交于点(-2,0),(x1,0),与y轴正半轴的交点在(0,2)的下方
∴a<0,c>0,
又∵图象与x轴交于点(-2,0),(x1,0),且1<x1<2,
∴对称轴在y轴左侧,对称轴为x= -b2a<0,
∴b<0,
∵图象与x轴交于点(-2,0),(x1,0),且1<x1<2,
∴对称轴x= -b2a<0,且x= -b2a>-2,
∴b>4a,
∴a<b<0,
由图象可知:当x=-2时y=0,
∴4a-2b+c=0,
整理得4a+c=2b,
又∵b<0,
∴4a+c<0.
∵当x=-2时,y=4a-2b+c=0,
∴2a-b+ c2=0,
而与y轴正半轴的交点在(0,2)的下方,
∴0< c2<1,
∴2a-b+1>0,
∵0=4a-2b+c,
∴2b=4a+c<0
而x=1时,a+b+c>0,
∴6a+3c>0,
即2a+c>0,
∴正确的有①②③④.

π/2算无理数
纯白之爱恋
2011-02-06 · 超过21用户采纳过TA的回答
知道答主
回答量:74
采纳率:0%
帮助的人:40万
展开全部
设点求对称点
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式