已知函数f(x)=x的立方-3ax的平方+3x+1,设a=2,求a的取值范围
2个回答
展开全部
已知函数f(x)=x^3-3ax^2+3x+1
(1)设a=2,求f(x)的单调区间;
(2)设f(x)在区间(2,3)中至少有一个极值点,求a的取值范围
⑴a=2,f'(x)=3x^2-12x+3=3(x^2-4x+1)=3[(x-2)^2-3]=3(x-2-√3)(x-2+√3)
列表
x (-∞,2-√3) 2-√3 (2-√3,2+√3) 2+√3 (2+√3,+∞)
f'(x) + 0 - 0 +
f(x) ↑ 极大 ↓ 极小 ↑
所以函数f(x)的递增区间是(-∞,2-√3),(2+√3,+∞)
递减区间是(2-√3,2+√3)
⑵f'(x)=3x^2-6ax+3=3(x^2-2ax+1)
首先3(x^2-2ax+1)=0有两个不同的实数根△=4a^2-4>0,得a>1或a<-1
方程3(x^2-2ax+1)=0的根x1=[2a+√(4a^2-4)]/2=a+√(a^2-1),x2=[2a-√(4a^2-4)]/2=a-√(a^2-1),
解2<x1<3,或2<x2<3得a的取值范围
解2<x1<3得5/4<a<5/3,解2<x2<3得空集
所以a的取值范围 5/4<a<5/3
(1)设a=2,求f(x)的单调区间;
(2)设f(x)在区间(2,3)中至少有一个极值点,求a的取值范围
⑴a=2,f'(x)=3x^2-12x+3=3(x^2-4x+1)=3[(x-2)^2-3]=3(x-2-√3)(x-2+√3)
列表
x (-∞,2-√3) 2-√3 (2-√3,2+√3) 2+√3 (2+√3,+∞)
f'(x) + 0 - 0 +
f(x) ↑ 极大 ↓ 极小 ↑
所以函数f(x)的递增区间是(-∞,2-√3),(2+√3,+∞)
递减区间是(2-√3,2+√3)
⑵f'(x)=3x^2-6ax+3=3(x^2-2ax+1)
首先3(x^2-2ax+1)=0有两个不同的实数根△=4a^2-4>0,得a>1或a<-1
方程3(x^2-2ax+1)=0的根x1=[2a+√(4a^2-4)]/2=a+√(a^2-1),x2=[2a-√(4a^2-4)]/2=a-√(a^2-1),
解2<x1<3,或2<x2<3得a的取值范围
解2<x1<3得5/4<a<5/3,解2<x2<3得空集
所以a的取值范围 5/4<a<5/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询