平面上有n(n≥3)个点任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少个不同的三角形?

需要清晰的推理过程!答案是n(n-1)(n-2)/6,用的是初一下的知识!... 需要清晰的推理过程!答案是n(n-1)(n-2)/6,用的是初一下的知识! 展开
xiaoxiao3676
2011-02-06 · TA获得超过3340个赞
知道小有建树答主
回答量:780
采纳率:20%
帮助的人:427万
展开全部
首先,先从很遥远的题目说起
平面上任意两点组合,若有n个点,那么组合有N*(N-1)/2(平面上任意一点,可以和其余(n-1)个点组合,但组合有重复,如AB,BA,所以要除以2,这个应该知道吧?)
那么现在又多了一个点,第一个点有n种,第二个点n-2种,第三个点n-3种,因此组合为n(n-1)(n-2),但组合仍有重复,如ABC,ACB,BAC,BCA,CAB,CBA,6种,因此除以6,答案就出来了
也可以用概率的方法解决。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式