
点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:……
点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF②AP⊥EF③△APD一定是等腰三角形④∠PFE=∠BA...
点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:
①AP=EF
②AP⊥EF
③△APD一定是等腰三角形
④∠PFE=∠BAP
⑤PD=根号2EC
图片地址:
?t=1297044622240&t=1297045274993 展开
?t=1297044622240&t=1297045274993 展开
2个回答
展开全部
①AP=EF正确,连接PC,可得PC=EF,PC=PA,所以AP=EF
②AP⊥EF正确;延长AP,交EF于点M,则∠EPM=∠BAP=∠PCE=∠PFE,所以可得AP⊥EF
③△APD一定是等腰三角形;错误,P是动点
④∠PFE=∠BAP正确;∠PFE=∠PCE=∠BAP
⑤PD=根号2EC正确;PD=根号2PF=根号2CE
②AP⊥EF正确;延长AP,交EF于点M,则∠EPM=∠BAP=∠PCE=∠PFE,所以可得AP⊥EF
③△APD一定是等腰三角形;错误,P是动点
④∠PFE=∠BAP正确;∠PFE=∠PCE=∠BAP
⑤PD=根号2EC正确;PD=根号2PF=根号2CE
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |