已知函数f(x)=(a^x+a^(-x))/2,若f(1)=3,求f(2)及f(1/2)
展开全部
解:∵f(x)=(a^x+a^(-x))/2,f(1)=3
∴(a+1/a)/2=3 ==>a+1/a=6..........(1)
==>a+1/a+2=8
==>(√a+1/√a)²=8 (a>0)
==>√a+1/√a=2√2..........(2)
故f(2)=(a²+1/a²)/2
=(a²+1/a²+2-2)/2
=(a+1/a)²/2-1
=6²/2-1 (由(1)式得)
=17
f(1/2)=(√a+1/√a)/2
=(2√2)/2 (由(2)式得)
=√2。
∴(a+1/a)/2=3 ==>a+1/a=6..........(1)
==>a+1/a+2=8
==>(√a+1/√a)²=8 (a>0)
==>√a+1/√a=2√2..........(2)
故f(2)=(a²+1/a²)/2
=(a²+1/a²+2-2)/2
=(a+1/a)²/2-1
=6²/2-1 (由(1)式得)
=17
f(1/2)=(√a+1/√a)/2
=(2√2)/2 (由(2)式得)
=√2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询