
一抛焦在x,截直线y=2x+1,所得弦长为根号15,求抛程.详细过程
1个回答
展开全部
把方程设为y²=ax
联立方程:y²=ax, y=2x+1
得 4x²+(4-a)x+1=0
所以x1+x2=(a-4)/4
x1*x2=1/4
所以(x1-x2)²=(x1+x2)²-4x1*x2=(a-4)²/16-1=(a²-8a)/16
由弦长公式,l²=(1+k²)(x1-x2)²=(1+2²)(a²-8a)/16=15
即a²-8a-48=0
即(a+4)(a-12)=0
解得a=-4或12
代入方程得:y²=-4x或y²=12x
联立方程:y²=ax, y=2x+1
得 4x²+(4-a)x+1=0
所以x1+x2=(a-4)/4
x1*x2=1/4
所以(x1-x2)²=(x1+x2)²-4x1*x2=(a-4)²/16-1=(a²-8a)/16
由弦长公式,l²=(1+k²)(x1-x2)²=(1+2²)(a²-8a)/16=15
即a²-8a-48=0
即(a+4)(a-12)=0
解得a=-4或12
代入方程得:y²=-4x或y²=12x
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询