如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C
(1)求抛物线的解析式;(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;(3)在(2)的条件下,在抛物线上是否存在一点Q,使...
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由。 展开
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由。 展开
展开全部
解:(1)把 x = 1 y = 0 代入 y=x2+bx-3a 得:1 + b -- 3a = 0
把 x = 0 y = -- 3 代入 y=x2+bx-3a 得:-- 3a = -- 3
∴ b = 3a -- 1 = 3 -- 1 = 2
∴抛物线的解析式为:y = x2 + 2x -- 3
( 把--3a看作 整体,不必专门求a值)
(2)把抛物线的解析式变为:y = (x -- 1)(x + 3)
令(x -- 1)(x + 3)= 0 得抛物线与x轴的另一交点C坐标为:(--3 , 0)
把把抛物线的解析式变为:y =(x + 1)2 -- 4
知 抛物线de对称轴为 x = -- 1, 最小值为 -- 4,顶点坐标为:N (--1, -- 4)。
∵ C坐标为(--3, 0)、B坐标为( 0, --3)
∴ △OBC是等腰直角三角形,且斜边BC=3√2, 则BC的平方= 18。
∵ N坐标为(--1, -- 4)、B坐标为( 0, --3),作NH ⊥ y轴于H,
则 △BNH 是等腰直角三角形,且斜边BN=√2, 则BN的平方= 2。
设 对称轴 x = -- 1 与 x轴交于点M,则MC=2,MN=4.
在Rt△MCN 中,NC的平方 = MC的平方 + MN的平方
∴ NC 的平方 = 20
又 ∵ BC的平方 + BN的平方 = 18 + 2 = 20
∴ BC的平方 + BN的平方 = NC 的平方
∴ △BCN 是Rt△,且是以点B为直角顶点的直角三角形。
∴满足题意的 点P的位置应在点N处,此时点P的坐标为(-- 1, -- 4).。
(3)在(2)的条件下,在抛物线上存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形,满足题意的点Q坐标为(-- 2, -- 3)。
我们知道,两直线 y1 = k1 x + b1 与 y2 = k2 x + b2 平行的时候,k1 = k2。
∵C坐标为(--3, 0)、B坐标为( 0, --3)
∴ 易求得 直线BC的解析式为:y = -- x -- 3。
过P(-- 1, -- 4)作 直线BC的平行线并设其解析式为y = -- x + b
求直线BC 与 抛物线 的交点,
需联立方程组y = -- x + b
y = x2 + 2x -- 3
解得: x = -- 2 ,y = -- 3 (另一组解x= --1,y= -- 4 表示P点坐标)
∴满足题意的点Q坐标为(-- 2, -- 3)。
注:第三问,题目让求作“直角梯形”,注意从∠CBP = 90° 进行突围!
第三问,满足题意的点Q 只有以上一种情形。
把 x = 0 y = -- 3 代入 y=x2+bx-3a 得:-- 3a = -- 3
∴ b = 3a -- 1 = 3 -- 1 = 2
∴抛物线的解析式为:y = x2 + 2x -- 3
( 把--3a看作 整体,不必专门求a值)
(2)把抛物线的解析式变为:y = (x -- 1)(x + 3)
令(x -- 1)(x + 3)= 0 得抛物线与x轴的另一交点C坐标为:(--3 , 0)
把把抛物线的解析式变为:y =(x + 1)2 -- 4
知 抛物线de对称轴为 x = -- 1, 最小值为 -- 4,顶点坐标为:N (--1, -- 4)。
∵ C坐标为(--3, 0)、B坐标为( 0, --3)
∴ △OBC是等腰直角三角形,且斜边BC=3√2, 则BC的平方= 18。
∵ N坐标为(--1, -- 4)、B坐标为( 0, --3),作NH ⊥ y轴于H,
则 △BNH 是等腰直角三角形,且斜边BN=√2, 则BN的平方= 2。
设 对称轴 x = -- 1 与 x轴交于点M,则MC=2,MN=4.
在Rt△MCN 中,NC的平方 = MC的平方 + MN的平方
∴ NC 的平方 = 20
又 ∵ BC的平方 + BN的平方 = 18 + 2 = 20
∴ BC的平方 + BN的平方 = NC 的平方
∴ △BCN 是Rt△,且是以点B为直角顶点的直角三角形。
∴满足题意的 点P的位置应在点N处,此时点P的坐标为(-- 1, -- 4).。
(3)在(2)的条件下,在抛物线上存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形,满足题意的点Q坐标为(-- 2, -- 3)。
我们知道,两直线 y1 = k1 x + b1 与 y2 = k2 x + b2 平行的时候,k1 = k2。
∵C坐标为(--3, 0)、B坐标为( 0, --3)
∴ 易求得 直线BC的解析式为:y = -- x -- 3。
过P(-- 1, -- 4)作 直线BC的平行线并设其解析式为y = -- x + b
求直线BC 与 抛物线 的交点,
需联立方程组y = -- x + b
y = x2 + 2x -- 3
解得: x = -- 2 ,y = -- 3 (另一组解x= --1,y= -- 4 表示P点坐标)
∴满足题意的点Q坐标为(-- 2, -- 3)。
注:第三问,题目让求作“直角梯形”,注意从∠CBP = 90° 进行突围!
第三问,满足题意的点Q 只有以上一种情形。
展开全部
(1)将A、B两点代入得抛物线解析式为y=x方+2x-3
(2)由(1)得C(-2,0),所以直线BC的斜率是-3/2,所以CP斜率是2/3,所以CP方程是y=2x/3-3,和抛物线方程联立得P(-4/3,-35/9)
(3)显然BC与PQ平行,所以PQ方程:y+35/9=-3/2(x+4/3),和抛物线方程联立得Q(-13/6,-95/36)
(2)由(1)得C(-2,0),所以直线BC的斜率是-3/2,所以CP斜率是2/3,所以CP方程是y=2x/3-3,和抛物线方程联立得P(-4/3,-35/9)
(3)显然BC与PQ平行,所以PQ方程:y+35/9=-3/2(x+4/3),和抛物线方程联立得Q(-13/6,-95/36)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我给你们个网址,你们去看12页26题 http://wenku.baidu.com/view/70a17f28915f804d2b16c161.html
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询