分解因式(1+x+x^2+x^3+........x^n)^2-x^n
展开全部
【楼上的,你的解答似乎不对吧】
【个人觉得:n有限制条件“ ≥2”】
储备知识:
x^n-y^n=(x-y)【x^(n-1)+x^(n-2)y+x^(n-3)y²+……+x²y^(n-3)+xy^(n-2)+y^(n-1)】
比如x^6-1=(x-1)(x^5+x^4+x³+x²+x+1)
因为n不定,不妨取个特殊值代入尝试
当n=5时,原式
= (1+x+x²+x³+x^4+x^5)²-x^5
=【[(x-1)(1+x+x²+x³+x^4+x^5)]²/(x-1)²】 -x^5
=【(x^6-1)²/(x-1)²】-x^5
=【(x^6-1)²-x^5(x-1)²】/(x-1)²
=【x^12-2x^6+1-x^5(x²-2x+1)】/(x-1)²
=(x^12-x^7-x^5+1)/(x-1)²
=【x^7(x^5-1)-(x^5-1)】/(x-1)²
=【(x^7-1)(x^5-1)】/(x-1)²
=【[(x-1) (x^6+x^5+x^4+x³+x²+x+1)][(x-1) (x^4+x³+x²+x+1)]】/(x-1)²
= (x^6+x^5+x^4+x³+x²+x+1) (x^4+x³+x²+x+1)
再看原题,类比上面做法,有
(1+x+x^2+x^3+........x^n)^2-x^n
=【[(x-1)(1+x+x²+x³+……+x^n)]²/(x-1)²】 -x^n
=【[x^(n+1)-1]²/(x-1)²】-x^n
=【[x^(n+1)-1)²-x^n(x-1)²】/(x-1)²
=【x^(2n+2)-x^(n+2)-x^n+1】/(x-1)²
=【x^(n+2)(x^n-1)-(x^n-1)】/(x-1)²
=【[x^(n+2)-1](x^n-1)】/(x-1)²
=【(x-1)[x^(n+1)+x^n+……+x²+x+1]】【(x-1)[x^(n-1)+……+x³+x²+x+1]】 /(x-1)²
=【x^(n+1)+x^n+……+x²+x+1】【x^(n-1)+……+x³+x²+x+1】
【希望对你有帮助】
【个人觉得:n有限制条件“ ≥2”】
储备知识:
x^n-y^n=(x-y)【x^(n-1)+x^(n-2)y+x^(n-3)y²+……+x²y^(n-3)+xy^(n-2)+y^(n-1)】
比如x^6-1=(x-1)(x^5+x^4+x³+x²+x+1)
因为n不定,不妨取个特殊值代入尝试
当n=5时,原式
= (1+x+x²+x³+x^4+x^5)²-x^5
=【[(x-1)(1+x+x²+x³+x^4+x^5)]²/(x-1)²】 -x^5
=【(x^6-1)²/(x-1)²】-x^5
=【(x^6-1)²-x^5(x-1)²】/(x-1)²
=【x^12-2x^6+1-x^5(x²-2x+1)】/(x-1)²
=(x^12-x^7-x^5+1)/(x-1)²
=【x^7(x^5-1)-(x^5-1)】/(x-1)²
=【(x^7-1)(x^5-1)】/(x-1)²
=【[(x-1) (x^6+x^5+x^4+x³+x²+x+1)][(x-1) (x^4+x³+x²+x+1)]】/(x-1)²
= (x^6+x^5+x^4+x³+x²+x+1) (x^4+x³+x²+x+1)
再看原题,类比上面做法,有
(1+x+x^2+x^3+........x^n)^2-x^n
=【[(x-1)(1+x+x²+x³+……+x^n)]²/(x-1)²】 -x^n
=【[x^(n+1)-1]²/(x-1)²】-x^n
=【[x^(n+1)-1)²-x^n(x-1)²】/(x-1)²
=【x^(2n+2)-x^(n+2)-x^n+1】/(x-1)²
=【x^(n+2)(x^n-1)-(x^n-1)】/(x-1)²
=【[x^(n+2)-1](x^n-1)】/(x-1)²
=【(x-1)[x^(n+1)+x^n+……+x²+x+1]】【(x-1)[x^(n-1)+……+x³+x²+x+1]】 /(x-1)²
=【x^(n+1)+x^n+……+x²+x+1】【x^(n-1)+……+x³+x²+x+1】
【希望对你有帮助】
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询