能帮我讲讲这道题吗?谢谢了!!

点P在曲线Cx²/4+y²=1上,若若存在过P的直线交曲线C于A点,交直线l:x=4于B点,(长度)满足PA=PB或PA=AB,称P点为H点A.曲线上... 点P在曲线C x²/4+y²=1上,若若存在过P的直线交曲线C于A点,交直线l:x=4于B点,(长度)满足PA=PB或PA=AB,称P点为H点
A.曲线上的所有点都是“H点”
B.曲线上仅有有限个点是“H点”
C.曲线上的所有点都不是“H点”
D.曲线上有无穷多个点(但不是所有的点)是“H点”
答案是D
展开
2lqc
2011-02-09 · TA获得超过1372个赞
知道小有建树答主
回答量:400
采纳率:0%
帮助的人:404万
展开全部
答案选A。在左半平面上人去一点P,过P点作直线L1交椭圆于A1点,交直线x=4于B1点,总可以找到|PA1|>|A1B1|,过P点作直线L2交椭圆于A2点,交直线x=4于B2点,总可以找到|PA2|<|A2B2|,
因为L1可以通过连续旋转变化到L2,并保持与椭圆和直线x=4相交,因此必可找到一对交点A、B
使|PA|=|AB|。P点与A点兑换,不难理解在右半平面的椭圆上任意一点P作直线都可以找到|PA|=|PB|
椭圆的四个顶点也不难找到|PA|=|PB|,略。
即,椭圆上所有点都是“H点”
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式