如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC上的两个动点。(D不与A,B重合)

如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC上的两个动点。(D不与A,B重合)且保持DE〃BC,以DE为边,在点A的异侧,作正方... 如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC上的两个动点。(D不与A,B重合)且保持DE〃BC,以DE为边,在点A 的异侧,作正方形DEFG。

(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长。

(2)设DE=x,△ABC与正方形DEFG垂叠部分的面积为y,试求y关于x的涵数关系式,写出x的取值范围,并求出y的最大值。
展开
蓝云993898
2011-02-09 · TA获得超过7634个赞
知道大有可为答主
回答量:1247
采纳率:0%
帮助的人:1874万
展开全部

解:

(1)当正方形DEFG的边GF在BC上时

DE/BC=(8-DE)/8;可知此时DE=4.8

(2)设DE=x,△ABC与正方形DEFG垂叠部分的面积为y,

根据题意,D不与A,B重合,故0<x<12

当0<x≤4.8,y=x^2 ,最大值为23.04;

当4.8<x≤12,△ABC与正方形DEFG垂叠部分高度为d

则x/12=(8-d)/8,故d=(24-2x)/3;

y=xd=x(24-2x)/3;

最大值为抛物线顶点,x=6,y=24;

所以x的取值范围为:0<x<12

当0<x≤4.8,y=x^2;

当4.8<x≤12,y=xd=x(24-2x)/3;

垂叠部分的面积y最大值为24;

百度网友4bfb14d
2011-02-16
知道答主
回答量:15
采纳率:0%
帮助的人:2.2万
展开全部
解:(1)当正方形DEFG的边GF在BC上时,如图 (1),过点A作BC边上的高AM,交DE于N,垂足为M. ∵S△ABC=48,BC=12,∴AM=8. ∵DE‖BC,△ADE∽△ABC, ∴, 而AN=AM-MN=AM-DE,∴. 解之得. ∴当正方形DEFG的边GF在BC上时,正方形DEFG的边长为4.8.…3分 (2)分两种情况: ①当正方形DEFG在△ABC的内部时,如图(2),△ABC与正方形DEFG重叠部分的面积为正方形DEFG的面积,∵DE=x,∴,此时x的范围是≤4.8 ②当正方形DEFG的一部分在△ABC的外部时, 如图(2),设DG与BC交于点Q,EF与BC交于点P, △ABC的高AM交DE于N, ∵DE=x,DE‖BC,∴△ADE∽△ABC, 即,而AN=AM-MN=AM-EP, ∴,解得. 所以, 即. 由题意,x>4.8,x<12,所以. 因此△ABC与正方形DEFG重叠部分的面积为 (0< x≤4.8) 当≤4.8时,△ABC与正方形DEFG重叠部分的面积的最大值为4.82=23.04 当时,因为,所以当时, △ABC与正方形DEFG重叠部分的面积的最大值为. 因为24>23.04, 所以△ABC与正方形DEFG重叠部分的面积的最大值为24.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
黑河二中吴桐宇
2011-02-10 · TA获得超过287个赞
知道答主
回答量:218
采纳率:100%
帮助的人:44.2万
展开全部
解:(1)当正方形DEFG的边GF在BC上时,如图

(1),过点A作BC边上的高AM,交DE于N,垂足为M.

∵S△ABC=48,BC=12,∴AM=8.

∵DE‖BC,△ADE∽△ABC,

∴,

而AN=AM-MN=AM-DE,∴.

解之得.

∴当正方形DEFG的边GF在BC上时,正方形DEFG的边长为4.8.…3分

(2)分两种情况:

①当正方形DEFG在△ABC的内部时,如图(2),△ABC与正方形DEFG重叠部分的面积为正方形DEFG的面积,∵DE=x,∴,此时x的范围是≤4.8

②当正方形DEFG的一部分在△ABC的外部时,

如图(2),设DG与BC交于点Q,EF与BC交于点P,

△ABC的高AM交DE于N,

∵DE=x,DE‖BC,∴△ADE∽△ABC,

即,而AN=AM-MN=AM-EP,

∴,解得.

所以, 即.

由题意,x>4.8,x<12,所以.

因此△ABC与正方形DEFG重叠部分的面积为

(0< x≤4.8)

当≤4.8时,△ABC与正方形DEFG重叠部分的面积的最大值为4.82=23.04

当时,因为,所以当时,

△ABC与正方形DEFG重叠部分的面积的最大值为.

因为24>23.04,

所以△ABC与正方形DEFG重叠部分的面积的最大值为24.

参考资料: 初中数学cooco

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友ac066f5
2012-03-17
知道答主
回答量:20
采纳率:0%
帮助的人:5.8万
展开全部
(1)当正方形DEFG的边GF在BC上时,如图(1),过点A作BC边上的高AM,交DE于N,垂足为M.
∵S△ABC=48,BC=12,∴AM=8,
∵DE∥BC,△ADE∽△ABC,
∴ DEBC=ANAM,
而AN=AM-MN=AM-DE,∴ DE12=8-DE8,
解之得DE=4.8.
∴当正方形DEFG的边GF在BC上时,正方形DEFG的边长为4.8,

(2)分两种情况:
①当正方形DEFG在△ABC的内部时,
如图(2),△ABC与正方形DEFG重叠部分的面积为正方形DEFG的面积,
∵DE=x,∴y=x2,
此时x的范围是0<x≤4.8,
②当正方形DEFG的一部分在△ABC的外部时,
如图(2),设DG与BC交于点Q,EF与BC交于点P,
△ABC的高AM交DE于N,
∵DE=x,DE∥BC,∴△ADE∽△ABC,
即 DEBC=ANAM,而AN=AM-MN=AM-EP,
∴ x12=8-EP8,解得EP=8- 23x.
所以y=x(8- 23x),即y=- 23x2+8x,
由题意,x>4.8,且x<12,所以4.8<x<12;
因此△ABC与正方形DEFG重叠部分的面积需分两种情况讨论,
当0<x≤4.8时,△ABC与正方形DEFG重叠部分的面积的最大值为4.82=23.04,
当4.8<x<12时,因为 y=-23x2+8x,
所以当 x=-82×(-23)=6时,
△ABC与正方形DEFG重叠部分的面积的最大值为二次函数的最大值:y最大═- 23×62+8×6=24;
因为24>23.04,
所以△ABC与正方形DEFG重叠部分的面积的最大值为24
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wojiaoquyayu
2012-04-14 · 超过11用户采纳过TA的回答
知道答主
回答量:80
采纳率:0%
帮助的人:36.2万
展开全部
当正方形DEFG的边GF在BC上时,如图(1),过点A作BC边上的高AM,交DE于N,垂足为M.
∵S△ABC=48,BC=12,∴AM=8,
∵DE∥BC,△ADE∽△ABC,
∴ DEBC=ANAM,
而AN=AM-MN=AM-DE,∴ DE12=8-DE8,
解之得DE=4.8.
∴当正方形DEFG的边GF在BC上时,正方形DEFG的边长为4.8,

(2)分两种情况:
①当正方形DEFG在△ABC的内部时,
如图(2),△ABC与正方形DEFG重叠部分的面积为正方形DEFG的面积,
∵DE=x,∴y=x2,
此时x的范围是0<x≤4.8,
②当正方形DEFG的一部分在△ABC的外部时,
如图(2),设DG与BC交于点Q,EF与BC交于点P,
△ABC的高AM交DE于N,
∵DE=x,DE∥BC,∴△ADE∽△ABC,
即 DEBC=ANAM,而AN=AM-MN=AM-EP,
∴ x12=8-EP8,解得EP=8- 23x.
所以y=x(8- 23x),即y=- 23x2+8x,
由题意,x>4.8,且x<12,所以4.8<x<12;
因此△ABC与正方形DEFG重叠部分的面积需分两种情况讨论,
当0<x≤4.8时,△ABC与正方形DEFG重叠部分的面积的最大值为4.82=23.04,
当4.8<x<12时,因为 y=-23x2+8x,
所以当 x=-82×(-23)=6时,
△ABC与正方形DEFG重叠部分的面积的最大值为二次函数的最大值:y最大═- 23×62+8×6=24;
因为24>23.04,
所以△ABC与正方形DEFG重叠部分的面积的最大值为24.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式