九年级数学上册答案
P31第1到7题P328-9P701-6P717-10P7211-12P971-9P9810-13P1251-3P1264-7谁能给下答案啊,感谢了~是人教版的数学书,谢...
P31第1到7题
P32 8-9
P70 1-6
P71 7-10
P72 11-12
P97 1-9
P98 10-13
P125 1-3
P126 4-7
谁能给下答案啊,感谢了~
是人教版的数学书,谢谢~ 展开
P32 8-9
P70 1-6
P71 7-10
P72 11-12
P97 1-9
P98 10-13
P125 1-3
P126 4-7
谁能给下答案啊,感谢了~
是人教版的数学书,谢谢~ 展开
1个回答
展开全部
你好,雨过丶彩虹:
我觉得你写错了吧?应该是九年级数学下册吧?九年级数学上册根本就找不到这些题目?
以下是人教版九年级数学下册你所说的题目的答案:
P31 1—7
1、根据题意,得AE=4-x,EG=4+x
∴y=(4-x)(4+x)=-x²+16(0<x<4)
2、根据题意,得第2年的销售量为5000(1+x)台,则第3年的销售量为5000(1+x)²台,即y=5000(x+1)²
3、D
4、图略
(1)y=x²+2x-3,开口方向向上,对称轴x=-1,顶点坐标(-1,-4)
(2)y=1+6x-x²,开口方向向下,对称轴x=3,顶点坐标(3,10)
(3)y=1/2x²+2x+1,开口方向向上,对称轴x=-2,顶点坐标(-2,-1)
(4)y=-1/4x²+x-4,开口方向向下,对称轴x=2,顶点坐标(2,-3)
5、∵s=15t-6t²=-6(t-5/4)²+75/8
∴当t=5/4时,s有最大值75/8
∴汽车刹车后到停下来前进了75/8m
6、(1)y=7/8x²+2x+1/8
(2)y=20/3x²-20/3x-5
7、设长为x m,则宽为(30-x)/2 m
∴菜园的面积可表示为y=x(15-x/2)=-(x²/2)+15x=-1/2(x-15)²+112.5
当x=15时,y有最大值112.5
∴矩形长为15m、宽为7.5m时,菜园面积最大,最大面积为112.5m²
P32 8—9
8、当s=85时,85=1.8t+0.064t²,则t=25,故他通过这段山坡需要25s
9、设矩形的长为x cm,则宽为(36-2x)/2=(18-x)cm
绕一边旋转后所成圆柱的侧面积y=2πx ×(18-x)=-2π(x-9)²+162π
∴当x=9时,侧面积最大,即当矩形长、宽都为9cm时,圆柱的侧面积最大
P70 1—6
1、∵相似多边形的各对应角相等,各对应边的比相等
∴∠E=∠K,∠G=∠M,∠F=∠360°-(∠E+∠H+∠G),∠F=∠N
∴∠E=67°,∠G=107°,∠N=360°-(67°+107°+143°)=43°
∵x/35=6/y=10/z=4/10,∴x=14,y=15,x=25
2、∵相似三角形对应边的比相等,设△DEF另两条边分别为x,y,周长为C
∴5/15=12/x=13/y,C=15+x+y
∴x=36,y=39,C=90
3、(1)∵∠1=∠2,∠G=∠I=90°,∴△FGH∽△JIH,∴3/6=x/8=5/y,∴x=4,y=10
(2)∵∠FHG+∠GHJ=∠KHJ+∠KHF,∠KHF=∠GHJ=90°,∴∠GHF=∠KHJ
又∵GH/KH=FH/HJ=3/2,∴△GFH∽△KHJ,∴x=124°,y/22=3/2,∴y=33
4、∵面积比等于边长比的平方
∴广告面积变为原来的9倍,即要付广告费180×9=1620(元)
5、图略
先选定位似中心O,然后根据位似图形的特点画图
6、根据位似的性质可知,黑板上的字与教科书上的字的相似比为6:0.3=20:1
∴设黑板上的字长为x cm、宽为y cm时,才能使学生看时与教科书上的字感觉相同,则
x/0.4=y/0.35=20/1,x=8,y=7
∴黑板上的字大小应为7cm×8cm
P71 7—10
7、∵OA/OC=OB/OD,∠DOC=∠AOB,∴△DOC∽△AOB
∴CD/AB=OC/OA,即b/AB=1/n,∴AB=nb,∴x=1/2(a-nb)
8、∵C为圆周上一点,∴∠ACB=90°
∴∠ACP+∠PCB=90°
又∵CD⊥AB,∴∠PCB+∠PBC=90°
∴∠ACP=∠BPC
又∵∠APC=∠BPC=90°
∴△APC∽△CPB,∴PA/PC=PC/PB,∴PC²=PA×PB
9、过程略,球能碰到墙面离地5.4m高的地方
10、35mm=0.035m,50mm=0.05m,70mm=0.07m,由题意知,△XYL∽△ABL
当焦距为50mm时,0.035m/AB=0.07m/5m
∴AB=2.5m
故焦距为70mm时,能拍摄5m处的景物有2.5m宽
P72 11—12
11、∵DB‖AC,∴△DOB∽△COA,∴OD/OC=OB/OA,∴OA×OD=OB×OC
12、设阴影部分的宽为x cm,则阴影部分的长为6cm
∵原来的矩形与阴影部分相似
∴10/6=6/x,∴x=3.6
∴留下的矩形面积为S=3.6×6=21.6cm²
P97 1—9
1、∵在Rt△ABC中,∠C=90°,a=2,sinA=1/3,∴c=a/sinA=2/(1/3)=6
∴b=√6²-2²=4√2
∴cosA=b/c=(4√2)/6=(2√2)/3,tanA=a/b=2/(4√2)=(√2)/4
2、∵∠C=90°,cosA=(√3)/2,∴AC/AB=(√3)/2
又∵AC=4√3,∴AB=(4√3)/(√3/2)=8
∴BC=√8²-(4√3)²=4
3、(1)原式=√2×(√2)/2-1=0
(2)原式=√3×(√3/2)+√3-2×(√3/2)²=3/2+√3-2×(3/4)=√3
4、(1)0.54 (2)0.43 (3)7.27 (4)-0.04
5、(1)A=40.08° (2)A=69.12° (3)A=88.38° (4)A=35.26°
6、
(1)若顶角为30°,腰为2√3,则AB=AC=2√3,则BC=2×AC×cos75°=4√3 cos75°
∴△ABC的周长为AB+AC+BC≈8.6
(2)若顶角为30°,底边为2√3,则BC=2√3,则AB=AC=(√3)/cos75°
∴△ABC的周长为AB+AC+BC≈16.8
(3)若顶角为30°,腰为2√3,则AB=AC=2√3,BC=2ABcos30°=4√3×(√3/2)=6
∴△ABC的周长为AB+AC+BC=6+4√3
(4)若底角为30°,底边为2√3,则BC=2√3,则AB=(√3)/(√3/2)=2=AC
∴△ABC的周长为AB+AC+BC=4+2√3
7、过程略,船离海岸42/tan33°≈65m远
8、由题意得tan43°24′=AB/BC,∴AB=BC×tan43°24′≈30.8m
过点D作DE⊥AB于点E,∵tan35°12′=AE/DE,AE=DE×tan35°12′≈23.0m
∴DC=AB-AE=30.8-23.0=7.8m,故这两个建筑物的高度分别为30.8m,7.8m
9、作CG⊥CD,与BA延长线交于点G;作BF⊥AB,与CD延长线于F;过D作DE⊥AB交于E
∵∠EDB=30°,∴∠DBF=30°,AG=CG=BF=5cm,∴BD=BF/cos30°=10/1.732≈5.8m
DF=5/√3≈2.9,∵∠GCA=45°,∴AC=5/(√2/2)=5√2≈7.3m
∴AB=CF-AG=3.4+5/√3-5=1.3m
P98 10—13
10、(1)5.8米(2)66°,可以安全使用这个梯子
11、(1)△AFB∽△FEC
(2)设CE=3x,CF=4x,则AB=8x,BF=6x,AF=10x,在Rt△AEF中,AF²+EF²=AE²
∴(5x)²+(10x)²=(5√5)²,解得x=1,则周长是2(10x+8x)=36cm
12、已知AB,BC及其夹角∠B,能求出平行四边形ABCD的面积S
S=AB×BC×sin∠B
13、
(1)内接正n边形的周长为:2nRsin(180°/n)
内接正n边形的面积为:nR²sin(180°/n)cos(180°/n)
(2)
内接正n边形 正六边形 正十二边形 正二十四边形 ……
周长 6R 6.21R 6.26R ……
面积 2.6R² 3R² 3.1R² ……
P125 1—3
1、图中三视图对应的直观图是(3)
2、图略(自己画吧,这里操作不方便)
3、底层有三个正方体,第二层有2个正方体,且与最底层的正方体错位1/2,最上层有一个正方体,放在第二层右边的正方体上
P126 4—7
4、图略
5、正六棱柱
6、三视图略
物体为一底面半径为5、高为20的圆柱体
∴体积为V=π×5²×20=500π
表面积为S=2π×5×20+2π×5²=250π
7、展开图略
表面积为S=π×(5√2)²×(1/√2)+20×2π×5+π×5²=25(√2 +9)π
我觉得你写错了吧?应该是九年级数学下册吧?九年级数学上册根本就找不到这些题目?
以下是人教版九年级数学下册你所说的题目的答案:
P31 1—7
1、根据题意,得AE=4-x,EG=4+x
∴y=(4-x)(4+x)=-x²+16(0<x<4)
2、根据题意,得第2年的销售量为5000(1+x)台,则第3年的销售量为5000(1+x)²台,即y=5000(x+1)²
3、D
4、图略
(1)y=x²+2x-3,开口方向向上,对称轴x=-1,顶点坐标(-1,-4)
(2)y=1+6x-x²,开口方向向下,对称轴x=3,顶点坐标(3,10)
(3)y=1/2x²+2x+1,开口方向向上,对称轴x=-2,顶点坐标(-2,-1)
(4)y=-1/4x²+x-4,开口方向向下,对称轴x=2,顶点坐标(2,-3)
5、∵s=15t-6t²=-6(t-5/4)²+75/8
∴当t=5/4时,s有最大值75/8
∴汽车刹车后到停下来前进了75/8m
6、(1)y=7/8x²+2x+1/8
(2)y=20/3x²-20/3x-5
7、设长为x m,则宽为(30-x)/2 m
∴菜园的面积可表示为y=x(15-x/2)=-(x²/2)+15x=-1/2(x-15)²+112.5
当x=15时,y有最大值112.5
∴矩形长为15m、宽为7.5m时,菜园面积最大,最大面积为112.5m²
P32 8—9
8、当s=85时,85=1.8t+0.064t²,则t=25,故他通过这段山坡需要25s
9、设矩形的长为x cm,则宽为(36-2x)/2=(18-x)cm
绕一边旋转后所成圆柱的侧面积y=2πx ×(18-x)=-2π(x-9)²+162π
∴当x=9时,侧面积最大,即当矩形长、宽都为9cm时,圆柱的侧面积最大
P70 1—6
1、∵相似多边形的各对应角相等,各对应边的比相等
∴∠E=∠K,∠G=∠M,∠F=∠360°-(∠E+∠H+∠G),∠F=∠N
∴∠E=67°,∠G=107°,∠N=360°-(67°+107°+143°)=43°
∵x/35=6/y=10/z=4/10,∴x=14,y=15,x=25
2、∵相似三角形对应边的比相等,设△DEF另两条边分别为x,y,周长为C
∴5/15=12/x=13/y,C=15+x+y
∴x=36,y=39,C=90
3、(1)∵∠1=∠2,∠G=∠I=90°,∴△FGH∽△JIH,∴3/6=x/8=5/y,∴x=4,y=10
(2)∵∠FHG+∠GHJ=∠KHJ+∠KHF,∠KHF=∠GHJ=90°,∴∠GHF=∠KHJ
又∵GH/KH=FH/HJ=3/2,∴△GFH∽△KHJ,∴x=124°,y/22=3/2,∴y=33
4、∵面积比等于边长比的平方
∴广告面积变为原来的9倍,即要付广告费180×9=1620(元)
5、图略
先选定位似中心O,然后根据位似图形的特点画图
6、根据位似的性质可知,黑板上的字与教科书上的字的相似比为6:0.3=20:1
∴设黑板上的字长为x cm、宽为y cm时,才能使学生看时与教科书上的字感觉相同,则
x/0.4=y/0.35=20/1,x=8,y=7
∴黑板上的字大小应为7cm×8cm
P71 7—10
7、∵OA/OC=OB/OD,∠DOC=∠AOB,∴△DOC∽△AOB
∴CD/AB=OC/OA,即b/AB=1/n,∴AB=nb,∴x=1/2(a-nb)
8、∵C为圆周上一点,∴∠ACB=90°
∴∠ACP+∠PCB=90°
又∵CD⊥AB,∴∠PCB+∠PBC=90°
∴∠ACP=∠BPC
又∵∠APC=∠BPC=90°
∴△APC∽△CPB,∴PA/PC=PC/PB,∴PC²=PA×PB
9、过程略,球能碰到墙面离地5.4m高的地方
10、35mm=0.035m,50mm=0.05m,70mm=0.07m,由题意知,△XYL∽△ABL
当焦距为50mm时,0.035m/AB=0.07m/5m
∴AB=2.5m
故焦距为70mm时,能拍摄5m处的景物有2.5m宽
P72 11—12
11、∵DB‖AC,∴△DOB∽△COA,∴OD/OC=OB/OA,∴OA×OD=OB×OC
12、设阴影部分的宽为x cm,则阴影部分的长为6cm
∵原来的矩形与阴影部分相似
∴10/6=6/x,∴x=3.6
∴留下的矩形面积为S=3.6×6=21.6cm²
P97 1—9
1、∵在Rt△ABC中,∠C=90°,a=2,sinA=1/3,∴c=a/sinA=2/(1/3)=6
∴b=√6²-2²=4√2
∴cosA=b/c=(4√2)/6=(2√2)/3,tanA=a/b=2/(4√2)=(√2)/4
2、∵∠C=90°,cosA=(√3)/2,∴AC/AB=(√3)/2
又∵AC=4√3,∴AB=(4√3)/(√3/2)=8
∴BC=√8²-(4√3)²=4
3、(1)原式=√2×(√2)/2-1=0
(2)原式=√3×(√3/2)+√3-2×(√3/2)²=3/2+√3-2×(3/4)=√3
4、(1)0.54 (2)0.43 (3)7.27 (4)-0.04
5、(1)A=40.08° (2)A=69.12° (3)A=88.38° (4)A=35.26°
6、
(1)若顶角为30°,腰为2√3,则AB=AC=2√3,则BC=2×AC×cos75°=4√3 cos75°
∴△ABC的周长为AB+AC+BC≈8.6
(2)若顶角为30°,底边为2√3,则BC=2√3,则AB=AC=(√3)/cos75°
∴△ABC的周长为AB+AC+BC≈16.8
(3)若顶角为30°,腰为2√3,则AB=AC=2√3,BC=2ABcos30°=4√3×(√3/2)=6
∴△ABC的周长为AB+AC+BC=6+4√3
(4)若底角为30°,底边为2√3,则BC=2√3,则AB=(√3)/(√3/2)=2=AC
∴△ABC的周长为AB+AC+BC=4+2√3
7、过程略,船离海岸42/tan33°≈65m远
8、由题意得tan43°24′=AB/BC,∴AB=BC×tan43°24′≈30.8m
过点D作DE⊥AB于点E,∵tan35°12′=AE/DE,AE=DE×tan35°12′≈23.0m
∴DC=AB-AE=30.8-23.0=7.8m,故这两个建筑物的高度分别为30.8m,7.8m
9、作CG⊥CD,与BA延长线交于点G;作BF⊥AB,与CD延长线于F;过D作DE⊥AB交于E
∵∠EDB=30°,∴∠DBF=30°,AG=CG=BF=5cm,∴BD=BF/cos30°=10/1.732≈5.8m
DF=5/√3≈2.9,∵∠GCA=45°,∴AC=5/(√2/2)=5√2≈7.3m
∴AB=CF-AG=3.4+5/√3-5=1.3m
P98 10—13
10、(1)5.8米(2)66°,可以安全使用这个梯子
11、(1)△AFB∽△FEC
(2)设CE=3x,CF=4x,则AB=8x,BF=6x,AF=10x,在Rt△AEF中,AF²+EF²=AE²
∴(5x)²+(10x)²=(5√5)²,解得x=1,则周长是2(10x+8x)=36cm
12、已知AB,BC及其夹角∠B,能求出平行四边形ABCD的面积S
S=AB×BC×sin∠B
13、
(1)内接正n边形的周长为:2nRsin(180°/n)
内接正n边形的面积为:nR²sin(180°/n)cos(180°/n)
(2)
内接正n边形 正六边形 正十二边形 正二十四边形 ……
周长 6R 6.21R 6.26R ……
面积 2.6R² 3R² 3.1R² ……
P125 1—3
1、图中三视图对应的直观图是(3)
2、图略(自己画吧,这里操作不方便)
3、底层有三个正方体,第二层有2个正方体,且与最底层的正方体错位1/2,最上层有一个正方体,放在第二层右边的正方体上
P126 4—7
4、图略
5、正六棱柱
6、三视图略
物体为一底面半径为5、高为20的圆柱体
∴体积为V=π×5²×20=500π
表面积为S=2π×5×20+2π×5²=250π
7、展开图略
表面积为S=π×(5√2)²×(1/√2)+20×2π×5+π×5²=25(√2 +9)π
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询