如图所示,从椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点M向x轴作垂线,

如图所示,从椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,且它的长轴端点A及短轴端点B的连线AB//OM,F2为右焦... 如图所示,从椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,且它的长轴端点A及短轴端点B的连线AB//OM,F2为右焦点。
(1) 求椭圆的离心率e。
(2) 设Q为椭圆上一点,当QF2⊥AB时,延长QF2与椭圆交与另一点P,若△F1PQ的面积为20倍根号3,求此时椭圆的方程。如图所示,从椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,且它的长轴端点A及短轴端点B的连线AB//OM,F2为右焦点。
(1) 求椭圆的离心率e。
(2) 设Q为椭圆上一点,当QF2⊥AB时,延长QF2与椭圆交与另一点P,若△F1PQ的面积为2a根号3,求此时椭圆的方程。
展开
百度网友aa967ef
2011-02-10 · TA获得超过310个赞
知道答主
回答量:159
采纳率:0%
帮助的人:102万
展开全部
利用平行关系可求离心率。由于MF1垂直于X轴,所以用X=-c代入方程,解出y,即MF1=b^2/a(这个最好当结论记住),所以M(-c,b^2/a)利用两直线斜率相等,得-b^2/(ac)=-b/a,即b/a=1,b^2/c^2=1 (a^2-c^2)/c^2=1,1/e^2-1=1,
e=根号2/2
利用pQ与AB垂直,且过f2,可设pQ:y=a/b(x-c),e^2=(a^2-b^2)/a^2=1-b^2/a^2=1/2 得c/a=根号2/2 b/a=根号2/2
然后直线与椭圆联立,保留y,利用上面的等式用a代,化简得5y^2+10y-25=0
(y1-y2)^2=(y1+y2)^-4y1y2和韦达定理得到|y1-y2|,面积等于|F1F2||y1-y2|/2=2a根号3,可以求了答案是a^2=25
b^2=25/2 要给分哦,手机打字不容易啊
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式