已知:如图,延长三角形ABC的各边,使BF=AC,AE=CD=BF,顺次连接D、E、F,所得△DEF为等边三角形。满意的话加悬
展开全部
(1)证明:
∵BF=AC,AB=AE
∴AF=AB+BF=AE+AC=CE
∵AE=CD,FE=ED
∴△AEF全等于△CDE(S.S.S)
(2)证:∴∠FAE=∠ECD
∴∠BAC=∠BCA
∴AB=BC
∵△AEF全等于△CDE
∴∠CDE=∠FEA,∠DEC=∠EFA
又∵∠FED=∠FDE=60°
∠FDB=∠FDE-∠CDE
∠DEC=∠FED-∠FEA
∴∠FDB=∠DEC
又∵∠DEC=∠EFA
∴∠FDB=∠EFA
∴同理可证∠BFD=∠CDE
又∵FD=DE
∴△FBD全等于△DCE(A.S.A)
∴BF=CD
∵AB=CD,BF=AC
∴AB=AC
∵AB=BC
∴△ABC是等边三角形
∵BF=AC,AB=AE
∴AF=AB+BF=AE+AC=CE
∵AE=CD,FE=ED
∴△AEF全等于△CDE(S.S.S)
(2)证:∴∠FAE=∠ECD
∴∠BAC=∠BCA
∴AB=BC
∵△AEF全等于△CDE
∴∠CDE=∠FEA,∠DEC=∠EFA
又∵∠FED=∠FDE=60°
∠FDB=∠FDE-∠CDE
∠DEC=∠FED-∠FEA
∴∠FDB=∠DEC
又∵∠DEC=∠EFA
∴∠FDB=∠EFA
∴同理可证∠BFD=∠CDE
又∵FD=DE
∴△FBD全等于△DCE(A.S.A)
∴BF=CD
∵AB=CD,BF=AC
∴AB=AC
∵AB=BC
∴△ABC是等边三角形
展开全部
证明:(1)∵BF=AC,AB=AE(已知)
∴FA=EC(等量代换).(1分)
∵△DEF是等边三角形(已知),
∴EF=DE(等边三角形的性质).(2分)
又∵AE=CD(已知),
∴△AEF≌△CDE(SSS).(4分)
(2)由△AEF≌△CDE,得∠FEA=∠EDC(对应角相等),
∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换),
△DEF是等边三角形(已知),
∴∠DEF=60°(等边三角形的性质),
∴∠BCA=60°(等量代换),
由△AEF≌△CDE,得∠EFA=∠DEC,
∵∠DEC+∠FEC=60°,
∴∠EFA+∠FEC=60°,
又∠BAC是△AEF的外角,
∴∠BAC=∠EFA+∠FEC=60°,
∴△ABC中,AB=BC(等角对等边).(6分)
∴△ABC是等边三角形(等边三角形的判定).(7分)
∴FA=EC(等量代换).(1分)
∵△DEF是等边三角形(已知),
∴EF=DE(等边三角形的性质).(2分)
又∵AE=CD(已知),
∴△AEF≌△CDE(SSS).(4分)
(2)由△AEF≌△CDE,得∠FEA=∠EDC(对应角相等),
∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换),
△DEF是等边三角形(已知),
∴∠DEF=60°(等边三角形的性质),
∴∠BCA=60°(等量代换),
由△AEF≌△CDE,得∠EFA=∠DEC,
∵∠DEC+∠FEC=60°,
∴∠EFA+∠FEC=60°,
又∠BAC是△AEF的外角,
∴∠BAC=∠EFA+∠FEC=60°,
∴△ABC中,AB=BC(等角对等边).(6分)
∴△ABC是等边三角形(等边三角形的判定).(7分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询