已知函数f(x)=ax+1/a(1-x)(a>0),且f(x)在[0,,1]上的最小值为g(a),试求g(a)的表达式,并求g(a)的最大值
1个回答
展开全部
由于 f(x)=ax+(1/a) (1-x)=[(a^2-1)/a]x+1/a
故,下对x的系数(a^2-1)/a进行讨论:
当系数(a^2-1)/a=0时,即 a=1时:
f(x)=1/a,则f(x)的最小值=f(x)的最大值=g(a)=1/a=1
当系数(a^2-1)/a>0时,即a>1时:
f(x)为单调递增的一次函数,
则f(x)的最小值=f(0)=1/a=g(a)
f(x)的最大值=f(1)=a
由于g(a)=1/a,为单调递减的双曲函数,
当a趋近于0时,g(a)无限趋近于正无穷,故g(a)无最大值
当系数(a^2-1)/a<0时,即0<a<1时:
f(x)为单调递减的一次函数,
则f(x)的最小值=f(1)=a=g(a)
f(x)的最大值=f(0)=1/a
而g(a)=a ,为单调递增的一次函数,
0<a<1,a无最大值 故g(a)无最大值!
综上所述:
当0<a<1时,f(x)的最小值=g(a)=1/a,g(a)无最大值;
当a=1 时,f(x)的最小值=g(a)=1/a=1
当a>1 时,f(x)的最小值=g(a)=a,g(a)无最大值;
故,下对x的系数(a^2-1)/a进行讨论:
当系数(a^2-1)/a=0时,即 a=1时:
f(x)=1/a,则f(x)的最小值=f(x)的最大值=g(a)=1/a=1
当系数(a^2-1)/a>0时,即a>1时:
f(x)为单调递增的一次函数,
则f(x)的最小值=f(0)=1/a=g(a)
f(x)的最大值=f(1)=a
由于g(a)=1/a,为单调递减的双曲函数,
当a趋近于0时,g(a)无限趋近于正无穷,故g(a)无最大值
当系数(a^2-1)/a<0时,即0<a<1时:
f(x)为单调递减的一次函数,
则f(x)的最小值=f(1)=a=g(a)
f(x)的最大值=f(0)=1/a
而g(a)=a ,为单调递增的一次函数,
0<a<1,a无最大值 故g(a)无最大值!
综上所述:
当0<a<1时,f(x)的最小值=g(a)=1/a,g(a)无最大值;
当a=1 时,f(x)的最小值=g(a)=1/a=1
当a>1 时,f(x)的最小值=g(a)=a,g(a)无最大值;
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询