高中数学,三角函数
f(x)=(1+cotx)(sinx^2)-2sin(x+π/4)sin(x-π/4)x∈[π/12,π/2]求值域(如何化为单一三角函数?要过程)...
f(x)=(1+cotx)(sinx^2)-2sin(x+π/4)sin(x-π/4) x∈[π/12,π/2]
求值域(如何化为单一三角函数?要过程) 展开
求值域(如何化为单一三角函数?要过程) 展开
1个回答
展开全部
f(x)=(1+cotx)(sinx^2)-2sin(x+π/4)sin(x-π/4) =(1+cosx/sinx)(sinx^2)+2sin(x+π/4)sin(π/4-x)
==(1+cosx/sinx)(sinx^2)+2cos(π/4-x)sin(π/4-x)
=sinx^2+sinxcosx+sin(π/2-2x)=sinx^2+1/2sin2x+cos2x=(1-cos2x)/2+1/2sin2x+cos2x
=1/2(sin2x+cos2x)+1/2=(根号2倍)sin(2x+π/4)/2+1/2
因为x∈[π/12,π/2],求得2x+π/4∈[5π/12,5π/4】,sinx∈[-二分之根号2,1】,从而原式取值范围【0,1】。
==(1+cosx/sinx)(sinx^2)+2cos(π/4-x)sin(π/4-x)
=sinx^2+sinxcosx+sin(π/2-2x)=sinx^2+1/2sin2x+cos2x=(1-cos2x)/2+1/2sin2x+cos2x
=1/2(sin2x+cos2x)+1/2=(根号2倍)sin(2x+π/4)/2+1/2
因为x∈[π/12,π/2],求得2x+π/4∈[5π/12,5π/4】,sinx∈[-二分之根号2,1】,从而原式取值范围【0,1】。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询