已知函数f(x)=loga(a^x-1)(a>0,且a≠1)
(1)证明函数f(x)的图像在Y轴的一侧(2)设A(x1,y1).B(x2,y2)(x1<x2)是f(x)图像上的两个点,证明直线AB的斜率大于0(3)求函数y=f(2x...
(1)证明函数f(x)的图像在Y轴的一侧
(2)设A(x1,y1).B(x2,y2)(x1<x2)是f(x)图像上的两个点,证明直线AB的斜率大于0
(3)求函数y=f(2x)与f^-1(x)的图像的交点坐标 展开
(2)设A(x1,y1).B(x2,y2)(x1<x2)是f(x)图像上的两个点,证明直线AB的斜率大于0
(3)求函数y=f(2x)与f^-1(x)的图像的交点坐标 展开
1个回答
展开全部
根据对数函数的定义域,所以a(a^x-1)>0,
又因为a>0
所以a^x<1
所以当0<a<1时,x>0
当1<a时,x<0.
所以函数f(x)的图像在y轴的一侧。
假设x1<x2
若0<a<1,则a^x1>a^x2, a^x1-1>a^x2-1
所以loga(a^x1-1)<loga(a^x2-1)
所以[loga(a^x1-1)-loga(a^x2-1)]/(x1-x2)>0
若1<a,则a^x1<a^x2, a^x1-1<a^x2-1
所以loga(a^x1-1)<loga(a^x2-1)
所以[loga(a^x1-1)-loga(a^x2-1)]/(x1-x2)>0
所以函数f(x)图像上任意两点斜率大于0.
又因为a>0
所以a^x<1
所以当0<a<1时,x>0
当1<a时,x<0.
所以函数f(x)的图像在y轴的一侧。
假设x1<x2
若0<a<1,则a^x1>a^x2, a^x1-1>a^x2-1
所以loga(a^x1-1)<loga(a^x2-1)
所以[loga(a^x1-1)-loga(a^x2-1)]/(x1-x2)>0
若1<a,则a^x1<a^x2, a^x1-1<a^x2-1
所以loga(a^x1-1)<loga(a^x2-1)
所以[loga(a^x1-1)-loga(a^x2-1)]/(x1-x2)>0
所以函数f(x)图像上任意两点斜率大于0.
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询