在直角坐标系xOy中,以O为圆心的圆与直线x-(根号3)y=4相切
(1)求圆O的方程(2)直线l过点P(1,2),且与圆O交于AB两点,若|AB|=2根号3,求直线l的方程(3)圆O于直线x轴相交于A,B两点,圆内的动点P使|PA|,|...
(1)求圆O的方程
(2)直线l过点P(1,2),且与圆O交于AB两点,若
|AB|=2根号3,求直线l的方程
(3)圆O于直线x轴相交于A,B两点,圆内的动点P使|PA|,|PO|,|PB|成等比数列,求P的轨迹方程 展开
(2)直线l过点P(1,2),且与圆O交于AB两点,若
|AB|=2根号3,求直线l的方程
(3)圆O于直线x轴相交于A,B两点,圆内的动点P使|PA|,|PO|,|PB|成等比数列,求P的轨迹方程 展开
长荣科机电
2024-10-27 广告
2024-10-27 广告
直角坐标机器人,作为深圳市长荣科机电设备有限公司的明星产品之一,以其高精度、高稳定性在自动化生产线上发挥着关键作用。该机器人采用直线电机或精密导轨驱动,能在电商平台Y、Z三个直角坐标轴上实现精准定位与运动控制,广泛应用于电子装配、包装、检测...
点击进入详情页
本回答由长荣科机电提供
展开全部
第一题升肆用点到直线的距离公式求R就行
圆与直线x-√3y=4相切,说明O到直线的距离为R
点P(x0,y0),直线方程Ax+By+C=0
点到直线的距仿笑祥离公式
d=|Ax0+By0+C|/[√(A^2+B^2)]
(1)R=I 0-√3*0-4 I/√1平方+(-√3)平方=2
所以圆的标准方程为
x^2+y^2=4
(3)A(-2,0)、B(2,0)
P(x,y),R=2
PA=(-2-x,-y)
PO=(x,y)
PB=(2-x,-y)
|PO|=√(x^2+y^2)<备搏2(圆的半径)
所以
0<x^2+y^2<2
|PO|^2=|PA|*|PB|
(x^2+y^2)^2=[(x+2)^2+y^2]*[(x-2)^2+y^2]
x^2-y^2=2
x^2=2-y^2
y∈(-2,2)
y^2∈(0,4)
|PA||PB|=(-2-x,-y)*(2-x,-y)
=x^2-4+y^2=x^2+y^2-4<0
又x^2+y^2-4=2(y^2-1)>-2
∴-2<|PA||PB|<0
圆与直线x-√3y=4相切,说明O到直线的距离为R
点P(x0,y0),直线方程Ax+By+C=0
点到直线的距仿笑祥离公式
d=|Ax0+By0+C|/[√(A^2+B^2)]
(1)R=I 0-√3*0-4 I/√1平方+(-√3)平方=2
所以圆的标准方程为
x^2+y^2=4
(3)A(-2,0)、B(2,0)
P(x,y),R=2
PA=(-2-x,-y)
PO=(x,y)
PB=(2-x,-y)
|PO|=√(x^2+y^2)<备搏2(圆的半径)
所以
0<x^2+y^2<2
|PO|^2=|PA|*|PB|
(x^2+y^2)^2=[(x+2)^2+y^2]*[(x-2)^2+y^2]
x^2-y^2=2
x^2=2-y^2
y∈(-2,2)
y^2∈(0,4)
|PA||PB|=(-2-x,-y)*(2-x,-y)
=x^2-4+y^2=x^2+y^2-4<0
又x^2+y^2-4=2(y^2-1)>-2
∴-2<|PA||PB|<0
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询