已知a>b>0,用分析法证明(a-b)^2/8a<(a+b)/2-根号下ab<(a-b)^2/8b

aris2002
2011-02-13 · TA获得超过2863个赞
知道小有建树答主
回答量:543
采纳率:0%
帮助的人:309万
展开全部
因为a>b>0
要证明(a-b)^2/8a<(a+b)/2-根号下ab<(a-b)^2/8b
即证明(a-b)^2/8a<(√a-√b)^2/2<(a-b)^2/8b (中间配平方)
即证明b(a-b)^2<4ab(√a-√b)^2<a(a-b)^2 (均乘以8ab)
即证明b(√a+√b)^2<4ab<a(√a+√b)^2 (均除以(√a-√b)^2)
即证明(√a+√b)^2/a<4<(√a+√b)^2/b (均除以ab)
即证明(1+√(b/a)^2<4<(√(a/b)+1)^2
即证明1+√(b/a)<2<√(a/b)+1 (开平方)
即证明√(b/a)<1<√(a/b)
即证明b/a<1<a/b
因为a>b>0
显然该式成立
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式