已知动点P到定点F(1,0)和定直线x=3的距离之和等于4,求P的轨迹方程
展开全部
依题得√[(x - 1)^2 + y^2] + |x - 3| = 4,即
(x - 1)^2 + y^2 = (4 - |x - 3|)^2 = 16 + (x - 3)^2 - 8|x - 3|.
y^2 + 4x - 24 + 8|x - 3| = 0.
x ≥ 3时,方程为 y^2 + 4x - 24 + 8x - 24 = 0,即y^2 + 12x - 48 = 0;
x < 3时,方程为 y^2 + 4x - 24 + 24 - 8x = 0,即y^2 - 4x = 0.
综上所述,P的轨迹方程为 y^2 + 12x - 48 = 0(x ≥ 3时),y^2 - 4x = 0(x < 3时).
(x - 1)^2 + y^2 = (4 - |x - 3|)^2 = 16 + (x - 3)^2 - 8|x - 3|.
y^2 + 4x - 24 + 8|x - 3| = 0.
x ≥ 3时,方程为 y^2 + 4x - 24 + 8x - 24 = 0,即y^2 + 12x - 48 = 0;
x < 3时,方程为 y^2 + 4x - 24 + 24 - 8x = 0,即y^2 - 4x = 0.
综上所述,P的轨迹方程为 y^2 + 12x - 48 = 0(x ≥ 3时),y^2 - 4x = 0(x < 3时).
大雅新科技有限公司
2024-11-19 广告
2024-11-19 广告
这方面更多更全面的信息其实可以找下大雅新。深圳市大雅新科技有限公司从事KVM延长器,DVI延长器,USB延长器,键盘鼠标延长器,双绞线视频传输器,VGA视频双绞线传输器,VGA延长器,VGA视频延长器,DVI KVM 切换器等,优质供应商,...
点击进入详情页
本回答由大雅新科技有限公司提供
展开全部
还有一个定义域
√[(x - 1)^2 + y^2] = 4-|x - 3|
4-|x - 3| ≥0 ,得x∈[-1,7]
综上所述,P的轨迹方程为 y^2 + 12x - 48 = 0,x ∈[3,7],y^2 - 4x = 0,x∈[-1,3)
√[(x - 1)^2 + y^2] = 4-|x - 3|
4-|x - 3| ≥0 ,得x∈[-1,7]
综上所述,P的轨迹方程为 y^2 + 12x - 48 = 0,x ∈[3,7],y^2 - 4x = 0,x∈[-1,3)
参考资料: http://zhidao.baidu.com/question/90176980.html
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
依题得√[(x - 1)^2 + y^2] + |x - 3| = 4,即
(x - 1)^2 + y^2 = (4 - |x - 3|)^2 = 16 + (x - 3)^2 - 8|x - 3|.
y^2 + 4x - 24 + 8|x - 3| = 0.
x ≥ 3时,方程为 y^2 + 4x - 24 + 8x - 24 = 0,即y^2 + 12x - 48 = 0;
x < 3时,方程为 y^2 + 4x - 24 + 24 - 8x = 0,即y^2 - 4x = 0.
综上所述,P的轨迹方程为 y^2 + 12x - 48 = 0(x ≥ 3时),y^2 - 4x = 0(x < 3时).
(x - 1)^2 + y^2 = (4 - |x - 3|)^2 = 16 + (x - 3)^2 - 8|x - 3|.
y^2 + 4x - 24 + 8|x - 3| = 0.
x ≥ 3时,方程为 y^2 + 4x - 24 + 8x - 24 = 0,即y^2 + 12x - 48 = 0;
x < 3时,方程为 y^2 + 4x - 24 + 24 - 8x = 0,即y^2 - 4x = 0.
综上所述,P的轨迹方程为 y^2 + 12x - 48 = 0(x ≥ 3时),y^2 - 4x = 0(x < 3时).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询