急!!!!!!!!!初二勾股定理题 在线等

一个直立的火柴盒在桌面倒下,启迪人们发现了勾股定理的一种新的验证方法,如图,火柴盒的一个侧面ABCD倒下到AB'C'D'的位置,连接CC',设AB=a,BC=b,AC=c... 一个直立的火柴盒在桌面倒下,启迪人们发现了勾股定理的一种新的验证方法,如图,火柴盒的一个侧面ABCD倒下到AB'C'D'的位置,连接CC',设AB=a,BC=b,AC=c,请利用四边形BCC'D的面积验证勾股定理:a²+b²=c² 展开
 我来答
燕尾蝶戒
2011-02-11 · TA获得超过240个赞
知道答主
回答量:62
采纳率:100%
帮助的人:53.2万
展开全部
四边形BCC′D′为直角梯形,∴S梯形BCC′D′=(BC+C′D′)·BD′=.∵Rt△ABC≌Rt△AB′C′, ∴∠BAC=∠BAC′. ∴∠CAC′=∠CAB′+∠B′AC′=∠CAB′+∠BAC=90°. ∴S梯形BCC′D′=S△ABC+S△CAC′+S△D′AC′= ab+c²+ab=. ∴=. ∴. a²+b²=c²
四边形BCC'D'的面积根据梯形面积公式得(a+b)(a+b)/2四边形BCC'D'的面积又等于三角形ABC、ACC'、AC'D'的面积的和,因为△ACD全等于△AC'D',所以角CAC'为直角,所以三角形ABC、ACC'、AC'D'的面积的和为c2/2+ab/2+ab/2=(a+b)(a+b)/2整理得a2+b2=c2
qsmm
2011-02-11 · TA获得超过267万个赞
知道顶级答主
回答量:28.3万
采纳率:90%
帮助的人:12.9亿
展开全部
∵直立的火柴盒横向到下
∴AC⊥AC′AC=AC′
(a+b)(a+b)÷2=(ab+c²+ab)÷2
(a+b)²=2ab+c²
a²+b²+2ab=2ab+c²
a²+b²=c²
∴成立
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式