两道数学题!大家帮帮忙啊!急~~~
以下两道题需要详细的步骤来解答!我自己不太会做了,一定加分!谢谢了!1、在三角形ABC中,已知A(1,0),B(3,1),C(2,0),CD为AB边上的高(1)求角B的余...
以下两道题需要详细的步骤来解答!我自己不太会做了,一定加分!谢谢了!
1、在三角形ABC中,已知A(1,0),B(3,1),C(2,0),CD为AB边上的高
(1)求角B的余弦值
(2)求点D的坐标
2、已知sin(5π+a)=负的五分之三,且a∈(二分之π,π),又tanβ=二分之一
(1)求tan(α-β)的值
(2)求sin(2α+三分之π)的值 展开
1、在三角形ABC中,已知A(1,0),B(3,1),C(2,0),CD为AB边上的高
(1)求角B的余弦值
(2)求点D的坐标
2、已知sin(5π+a)=负的五分之三,且a∈(二分之π,π),又tanβ=二分之一
(1)求tan(α-β)的值
(2)求sin(2α+三分之π)的值 展开
4个回答
展开全部
1(1)先在直角坐标系内画出图像,标清ABCD,过B作X轴的垂线,垂足为E,过D作X轴的垂线,垂足为F ∵CE=1,BE=1
∴BC=根2 ∵AE=2,BE=1∴AB=根5
设AD=x ,所以BD=根5-X
∴CD的平方=1-X∧2=2-(根5-X)∧2
解得X=5分之2倍根5
∴cosB=BC/BD=3分之根10
(2)在三角形AFD和三角形AEB中,角DFA等于角BEA,角DAC等于角BAE
∴△ACD相似于△AEB
∴AC/AE=DF/BE
∴DF=1/2
又∵AD=5分之2倍根5
所以AF=10分之根下55
∴D(1+10分之根下55,1/2)
2(1)sin(5π+a)=sin(π+a)=-sina=-3/5
∴sina=3/5
∴cosa=±4/5
∵a∈(二分之π,π),∴cosa=-4/5
∴tana=3/5除以-4/5=-3/4
∴tan(a-b)=(tana-tanb)/(1+tanatanb)=-2
(2)sin(2α+三分之π)
=sin2acos三分之π+cos2asin三分之π
=2sinacosa×1/2+(1-2sin^2a)×根3/2
=-12/25+7倍根3/50
=(7倍根3-24)/50
∴BC=根2 ∵AE=2,BE=1∴AB=根5
设AD=x ,所以BD=根5-X
∴CD的平方=1-X∧2=2-(根5-X)∧2
解得X=5分之2倍根5
∴cosB=BC/BD=3分之根10
(2)在三角形AFD和三角形AEB中,角DFA等于角BEA,角DAC等于角BAE
∴△ACD相似于△AEB
∴AC/AE=DF/BE
∴DF=1/2
又∵AD=5分之2倍根5
所以AF=10分之根下55
∴D(1+10分之根下55,1/2)
2(1)sin(5π+a)=sin(π+a)=-sina=-3/5
∴sina=3/5
∴cosa=±4/5
∵a∈(二分之π,π),∴cosa=-4/5
∴tana=3/5除以-4/5=-3/4
∴tan(a-b)=(tana-tanb)/(1+tanatanb)=-2
(2)sin(2α+三分之π)
=sin2acos三分之π+cos2asin三分之π
=2sinacosa×1/2+(1-2sin^2a)×根3/2
=-12/25+7倍根3/50
=(7倍根3-24)/50
2011-02-12
展开全部
蛋定 不要J动哈 其实把 我也不知道啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
以前知道 现在出啦好几点了 忘了 第一个简单 画数轴出来就看的出来
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一题先求两点间距离,也就是AB、BC和AC的长度,然后用余弦定理,直接带入就行了
第二小题就先求直线AB的方程,然后AB和CD相互垂直,求出CD的斜率,又经过C点,这样CD的方程就出来了,直接求AB与CD的交点D就行啦
第二题主要是三角函数的相互变换,灵活运用很容易就解出来了
sin(5π+a)=-sin(a)
tan(α-β)=sin(α-β)/cos(α-β)
sin(2α+π/3)=sin2αcosπ/3+cos2αsinπ/3等
第二小题就先求直线AB的方程,然后AB和CD相互垂直,求出CD的斜率,又经过C点,这样CD的方程就出来了,直接求AB与CD的交点D就行啦
第二题主要是三角函数的相互变换,灵活运用很容易就解出来了
sin(5π+a)=-sin(a)
tan(α-β)=sin(α-β)/cos(α-β)
sin(2α+π/3)=sin2αcosπ/3+cos2αsinπ/3等
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询