已知函数f(x)=log2X,x∈【2,8】,函数g(x)=f^2(x)-2af(x)+3的最小值为h(a),是否存在实数M,同时满足以下条

1.m>n>3,2.当h(a)的定义域为【N,M】时,值域为【N^2,M^2】,若存在,求出M,N的值;若不存在,说明理由... 1.m>n>3,2.当h(a)的定义域为【N,M】时,值域为【N^2,M^2】,若存在,求出M ,N的值;若不存在,说明理由 展开
百度网友77fd949
2011-02-12 · TA获得超过2585个赞
知道小有建树答主
回答量:213
采纳率:0%
帮助的人:390万
展开全部

我理解题目的意思是这样的:

已知:函数f(x)=log2(X),x∈[2,8],

          函数g(x)=f²(x)-2af(x)+3的最小值为h(a),是否存在实数M,N同时满足以下条件:①M>N>3;

②当h(a)的定义域为[N,M]时,值域为[N²,M²];

若存在,求出M ,N的值;若不存在,说明理由.

解:

∵f(x)=log2(X),x∈[2,8]

∴f(x)∈[1,3]

设f(x)=t

则g(t)=t²-2at+3,t∈[1,3]

         =(t-a)²+3-a²

∵g(t)的最小值为h(a)

∴即要求g(t)=(t-a)²+3-a²这个二次方程的最小值

但是对称轴t=a的位置是未知的,无法确定对称轴的位置,就无法判断最小值在何处取得,所以要对a进行分情况讨论(三种情况见图.另:因为t∈[1,3],所以三种情况的图像只取[1,3]区间内的,即红色部分);

①当a<1时,最小值在t=1处取得;

此时,最小值h(a)= -2a+4

②当1≤a≤3时,最小值在对称轴t=a处取得;

此时,最小值h(a)= -a&sup2;+3

③当a>3时,最小值在t=3处取得;

此时,最小值h(a)= -6a+12

再看M、N要满足的第一个条件:M>N>3,也就是要求h(a)定义域大于3,只有第三种情况a>3满足,综上h(a)= -6a+12 (a>3);

再看M、N要满足的第一个条件:当h(a)的定义域为[N,M]时,值域为[N&sup2;,M&sup2;],值域都为平方型的,即值域是大于等于0;但是由上一个条件得到的h(a),在a>3时,h(a)的值域是小于0的,与条件要求不符,所以不存在这样的M和N.

也不知道我对题目的理解对不对,也不知你能不能看懂我写的这么多,但是就按照我的理解成的这种题型:讨论二次函数的对称轴位置的题,还是挺常见的,即使我理解错了你的题目,你把这个方法看看还是能挺有用的~

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式