![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
已知方程(a-x)(a-x)-4(b-x)(c-x)=0. 求证:此方程必有实数根?
展开全部
可化为3x^2-2(a-2b-2c)x-(a^2-4bc)=0
判别式
△=4(a-2b-2c)^2+12(a^2-4bc)
=4a^2+16b^2+16c^2-16ab-16ac+32bc+12a^2-48bc
=16(a^2+b^2+c^2-ab-bc-bc)
=8[(a-b)^2+(b-c)^2+(c-a)^2]≥0
可见,至少有一个实根
判别式
△=4(a-2b-2c)^2+12(a^2-4bc)
=4a^2+16b^2+16c^2-16ab-16ac+32bc+12a^2-48bc
=16(a^2+b^2+c^2-ab-bc-bc)
=8[(a-b)^2+(b-c)^2+(c-a)^2]≥0
可见,至少有一个实根
展开全部
证:原式即:-3x²+(4b+4c-2a)x+a²-4bc=0
△=(4b+4c-2a)²+12*(a²-4bc)
=4[(a²+4b²+4c²-4ab+8bc-4ac)+3a²-12bc]
=8[(a-b)²+(b-c)²+(c-a)²]
≥0
∴此方程必有实数根
△=(4b+4c-2a)²+12*(a²-4bc)
=4[(a²+4b²+4c²-4ab+8bc-4ac)+3a²-12bc]
=8[(a-b)²+(b-c)²+(c-a)²]
≥0
∴此方程必有实数根
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
整理方程得:3²+2(a-2b-2c)x-(a²-4bc)=0
∵ △/4=(a-2b-2c)²+3(a²-4bc)=2(2a²+2b²+2c²-2ab-2bc-2ca)=2[(a-b)²+(b-c)²+(c-a)²]≥0
∴ 已知方程必有实数根
∵ △/4=(a-2b-2c)²+3(a²-4bc)=2(2a²+2b²+2c²-2ab-2bc-2ca)=2[(a-b)²+(b-c)²+(c-a)²]≥0
∴ 已知方程必有实数根
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.化简3x²-2(a-2b-2c)x-(a²-4bc)=0
△=4(a-2b-2c)²+12(a²-4bc)=16(a²+b²+c²-ab-bc-bc)=8[(a-b)²+(b-c)²+(c-a)²]≥0恒成立,即得证。
2.由题意,令△=0,a-b=b-c=c-a=0,所以a=b=c,故为等边三角形
△=4(a-2b-2c)²+12(a²-4bc)=16(a²+b²+c²-ab-bc-bc)=8[(a-b)²+(b-c)²+(c-a)²]≥0恒成立,即得证。
2.由题意,令△=0,a-b=b-c=c-a=0,所以a=b=c,故为等边三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
首先将式子展开得到-3X^2 (4b 4c-2a)x a^2-4bc=0
然后求判别式b^2-4ac=16(a^2 b^2 c^2-ab-ac-bc)
(a-b)(a-b)>=0得到式子一a^2 b^2>=2ab
(a-c)(a-c)>=0得式子二a^2 c^2>=2ac
(b-c)(b-c)>=0得式子三b^2 c^2>=2bc
三个式子相加得到a^2 b^2 c^2>=ab bc ac
所以判别式大于等于零
所以有实数根
然后求判别式b^2-4ac=16(a^2 b^2 c^2-ab-ac-bc)
(a-b)(a-b)>=0得到式子一a^2 b^2>=2ab
(a-c)(a-c)>=0得式子二a^2 c^2>=2ac
(b-c)(b-c)>=0得式子三b^2 c^2>=2bc
三个式子相加得到a^2 b^2 c^2>=ab bc ac
所以判别式大于等于零
所以有实数根
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
利用
费马大定理: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. 无正整数解。
两边等后变形很容易的。
费马大定理: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. 无正整数解。
两边等后变形很容易的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |