用数学归纳法证明1^3+2^3+3^3+…………n^3=(1+2+3+............+n)^2

笑年1977
2011-02-12 · TA获得超过7.2万个赞
知道大有可为答主
回答量:2.2万
采纳率:81%
帮助的人:1.2亿
展开全部
当n=1时
左边1^3=1 右边1^2=1
左边=右边
假设当n=k时等式成立
1^3+2^3+3^3+…k^3=(1+2+3+............+k)^2
则当n=k+1时
1^3+2^3+3^3+…k^3+(k+1)^3
=(1+2+3+............+k)^2+(k+1)^3 1+2+3....+k=k(k+1)/2 等差数列
=k^2(1+k)^2/4+(k+1)^3
=(1+k)^2(k^2/4+k+1)
=(1+k)^2(k^2+4k+4)/4
=(k+1)^2(k+2)^2/4
=[(k+1)(k+1+1)/2]^2
=(1+2+3......+k+k+1)^2 1+2+3+...k+k+1=(k+1)(k+1+1)/2 也是等差数列
所以当n=k+1等式也成立
所以
1^3+2^3+3^3+…………n^3=(1+2+3+............+n)^2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式