函数F(x)=loga(ax^2-x)在[2,4]上是增函数,求实数a的取值范围

箭衡
2011-02-12 · TA获得超过1.1万个赞
知道大有可为答主
回答量:1545
采纳率:100%
帮助的人:3003万
展开全部
解:∵F(x)=loga(ax^2-x)在[2,4]上是增函数
即ax^2-x>0在[2,4]恒成立
即a>x/x^2=1/x在[2,4]恒成立
即a>(1/x)max=1/2
①1/2<a<1时,y=logax为减函数
∴y=ax^2-x在[2,4]单调递减,∵y=ax^2-x对称轴x=1/(2a)
∴1/(2a)≥4,∴a≤1/8
综上,a∈空集
②a>1时,y=logax为增函数
∴y=ax^2-x在[2,4]单调递增
∴1/(2a)≤2,∴a≥1/4
∴综上,a∈(1,+∞)
∴综上①②,a∈(1,+∞)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式