正数a,b,c满足a+b+c=1, 求证 (a+1/a)(b+1/b)(c+1/c)>=1000/27 5

箭衡
2011-02-12 · TA获得超过1.1万个赞
知道大有可为答主
回答量:1545
采纳率:100%
帮助的人:2986万
展开全部
证明:a+1/a=a+1/(9a)+1/(9a)+...+1/(9a)(9个1/9a相加)≥10*((1/9)^9/a^8)^(1/10)
同理b+1/b≥10*((1/9)^9/b^8)^(1/10)
c+1/c≥10*((1/9)^9/c^8)^(1/10)
以上三式相乘,∵1=a+b+c>=3(abc)^(1/3),∴1/(abc)>=3^3。
(a+1/a)(b+1/b)(c+1/c)≥1000*((1/9)^27/(abc)^8)^(1/10)≥
1000*((1/9)^27*3^24)^(1/10)≥1000*((1/3)^30)^(1/10)≥1000/27
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式