9如图,在正方形ABCD中,M为AB上一点,N为BC上一点,并且BM=BN,BP⊥MC于P 求证:DP⊥NP

需字
2011-02-14 · TA获得超过1797个赞
知道小有建树答主
回答量:128
采纳率:0%
帮助的人:106万
展开全部
证明:在正方形ABCD中,BC=CD,∠ABC=∠BCD=90°
BP⊥MC
所以∠BPC=∠MPB=90°,∠PBC=∠PMC
所以△BPM∽△CPB
所以BP/BM=CP/CB
又BM=BN,CB=CD
所以BP/BN=CP/CD
又因∠PBC+∠PCB=∠PCD+∠PCB=90°
所以∠PBC=∠PCD
所以△PBN∽△PCD
所以∠DPC=∠NPB
所以∠DPC+∠CPN=∠NPB+∠CPN
所以∠DPN=∠CPB=90°
即:DP⊥NP.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式