1/[x^2乘以根号下(1+x^2)]的积分

我爱学习112
高粉答主

2021-01-04 · 每个回答都超有意思的
知道大有可为答主
回答量:7259
采纳率:100%
帮助的人:161万
展开全部

x=sina

dx=cosada

√(1-x²)=cosa

原式=∫sina*cosa*cosada

=∫sina*(1-sin²a)da

=∫sinada-∫sin³纤脊ada

=-cosa-∫sin²adcosa

=-cosa-∫(1-cos²a)dcosa

=-cosa-cosa+cos³a/3+C

==-2√(1-x²)+(1-x²)√(1-x²)/3+C

扩展资料

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、毁碧渗∫慧棚 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

轮看殊O
高粉答主

2020-12-25 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:744万
展开全部

x=sina

dx=cosada

√(1-x²)=cosa

原式=∫sina*cosa*cosada

=∫sina*(1-sin²a)da

=∫sinada-∫sin³ada

=-cosa-∫sin²adcosa

=-cosa-∫(1-cos²a)dcosa

=-cosa-cosa+cos³a/3+C

==-2√(1-x²)+(1-x²)√(1-x²)/3+C

扩展资料

某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点缓禅的趋势”简态。


求极限基本方法有



1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;



2、无穷大根式减去无穷大根式时,分子有理化;




3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无拦哪源穷小比无穷小,分子分母还必须是连续可导函数。



4、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hf_hanfang
2011-02-12 · TA获得超过1362个赞
知道小有建树答主
回答量:260
采纳率:0%
帮助的人:141万
展开全部

见启简州悄蔽下图咐弯

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式