已知a>0且a≠1,f(x)=loga(ax-根号x)。当a>1时,判断函数f(x)的单调性,并用函数单调性的定义证明你的结论

百度网友eb1568f
2011-02-12 · TA获得超过299个赞
知道小有建树答主
回答量:187
采纳率:0%
帮助的人:184万
展开全部
单调递增。设x1>x2>1/a平方,
则f(x1)-f(x2)=loga((ax1-√x1)/(ax2-√x2))
=loga(1+(ax1-√x1-ax2+√x2)/(ax2-√x2))
而ax1-√x1-ax2+√x2=a(√x1+x2)(√x1-√x2)-(√x1-√x2)
=(√x1-√x2)(a√x1+a√x2-1)
>(√x1-√x2)(a*√(1/a的平方)-a√(1/a的平方)-1)
=(√x1-√x2)(a*1/a+a*1/a-1)
=√x1-√x2>0(因为x1>x2>1/a平方)
故ax1-√x1-ax2+√x2>0,即1+(ax1-√x1-ax2+√x2)/(ax2-√x2)>1,
也即f(x1)-f(x2)>0,而x1>x2,a>1
所以f(x)单调递增,证毕!(√是根号)
苔锡环9979
2011-02-12 · TA获得超过5204个赞
知道小有建树答主
回答量:672
采纳率:100%
帮助的人:354万
展开全部
令t=根号x(t≥0),则f(x)=loga(at²-t)
根据对数定义,有
at²-t>0,由于a>1,故
t(at-1)>0,得t>1/a
令g(t)=at²-t (t>1/a),则
g(t)导数 g'(t)=2at-1
由于t>1/a,故2at>2, 2at-1>1,即
g'(t)>0,故g(t)在定义域上单调递增,
又a>1,故 loga(g(t))在定义域上单调递增,
即a>1时,f(x)在定义域上单调递增
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式