
数学高手进 自主招生题
w=(az+b)/(cz+d),a,b,c,d是实数,当Imz>0时,Imw>0则:Aad+bc>0Bad+bc<0Cad-bc>0Dad-bc<0注:lm表示复数虚部...
w=(az+b)/(cz+d),a,b,c,d是实数,当Imz>0时,Imw>0则: A ad+bc>0 B ad+bc<0 C ad-bc>0 D ad-bc<0 注:lm表示复数虚部
展开
3个回答
展开全部
【注】①该题利用“共轭复数及性质”来做,最为简单,方便。
设z是一个复数,记z^为其共轭复数。即z与z^为共轭复数。
②关于共轭复数的性质:
(z1+z2)^=z1^+z2^.
(z1z2)^=z1^z2^.
(z1/z2)^=(z1^)/(z2^).
z×z^=|z|².
实数的共轭复数是其本身。
2Imz=z-z^.
【2】解:
∵w=(az+b)/(cz+d).
∴取拔,可得:w^=(az^+b)/(cz^+d).
∴两式相减可得:
2Imw=w-w^=[(az+b)/(cz+d)]-[(az^+b)/(cz^+d)]
=[(az+b)(cz^+d)-(az^+b)(cz+d)]/[(cz+d)(cz^+d)].
∵(cz+d) ×(cz^+d)=(cz+d) ×(cz+d)^=|cz+d|²>0.即分母为正数。
∴化简分子=(ad-bc)(z-z^)=(ad-bc) ×2Im
∴Imw=[(ad-bc)Imz]/[(cz+d)(cz^+d)].
由题设可知,此时必有ad-bc>0.
∴选C.
【【【注】】】如果对共轭复数的应用不熟练。
可设复数z=x+yi. (x,y∈R).代入w=(az+b)/(cz+d).
整理可得:
W={[(ax+b)(cx+d)+acy²]+(ac-bd)yi}/(cz+d)(cz^+d).
下面就很清楚了。
设z是一个复数,记z^为其共轭复数。即z与z^为共轭复数。
②关于共轭复数的性质:
(z1+z2)^=z1^+z2^.
(z1z2)^=z1^z2^.
(z1/z2)^=(z1^)/(z2^).
z×z^=|z|².
实数的共轭复数是其本身。
2Imz=z-z^.
【2】解:
∵w=(az+b)/(cz+d).
∴取拔,可得:w^=(az^+b)/(cz^+d).
∴两式相减可得:
2Imw=w-w^=[(az+b)/(cz+d)]-[(az^+b)/(cz^+d)]
=[(az+b)(cz^+d)-(az^+b)(cz+d)]/[(cz+d)(cz^+d)].
∵(cz+d) ×(cz^+d)=(cz+d) ×(cz+d)^=|cz+d|²>0.即分母为正数。
∴化简分子=(ad-bc)(z-z^)=(ad-bc) ×2Im
∴Imw=[(ad-bc)Imz]/[(cz+d)(cz^+d)].
由题设可知,此时必有ad-bc>0.
∴选C.
【【【注】】】如果对共轭复数的应用不熟练。
可设复数z=x+yi. (x,y∈R).代入w=(az+b)/(cz+d).
整理可得:
W={[(ax+b)(cx+d)+acy²]+(ac-bd)yi}/(cz+d)(cz^+d).
下面就很清楚了。
展开全部
选c,不妨令z=0+ki,又lmz>0,不妨进一步化简令k=1
因此带入w化简后lmw=(ad-bc)/(c^2+d^2)>0,因此ad-bc>0,
因此选c
因此带入w化简后lmw=(ad-bc)/(c^2+d^2)>0,因此ad-bc>0,
因此选c
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不得不说,大御所童鞋的解法更简便。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询