数学日记六年级的急急急急急!!!!
展开全部
今天我又遇到一道数学难题,费了好大的劲才解出来。题目是:两棵树上共有30只小鸟,乙树上先飞走4只,这时甲树飞向乙树3只,两棵树上的小鸟刚好相等。两棵树上原来各有几只小鸟?
我一看完题目,就知道这是还原问题,于是用还原问题的方法解。可验算时却发现错了。我便更加认真地重新做起来。我想,少了4只后一样多,那一半是13只,还原乙树是14只;甲树就是16只。算式为:(30—4)÷2=13(只);13—3+4=14(只);30—14=16(只)。答案为:甲树16只,乙树14只。
通过解这道题,我明白了,无论做什么题,都要细心,否则,即使掌握了解题方法,结果还会出错。
我一看完题目,就知道这是还原问题,于是用还原问题的方法解。可验算时却发现错了。我便更加认真地重新做起来。我想,少了4只后一样多,那一半是13只,还原乙树是14只;甲树就是16只。算式为:(30—4)÷2=13(只);13—3+4=14(只);30—14=16(只)。答案为:甲树16只,乙树14只。
通过解这道题,我明白了,无论做什么题,都要细心,否则,即使掌握了解题方法,结果还会出错。
展开全部
自己记一下解某道题的思路就行了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
今天是星期六,我一个人在家,睡醒觉来已经8:30了,我立刻跳下床,这时妈妈打来了一个电话,嘱咐了我一番,接这个电话我花了五分钟,我迅速换衣服,刷牙洗脸。然后直奔餐桌吃早饭,我又花了十五分钟,15+5=20(分钟),8:30+20=8:50(分钟)12:00—8:50=3:50(分),还有三小时五十分钟就到中午了,我走回小房时正好9:00整,我忙拿出作业本开始写作业,我花了一个小时的时间写作业,9:00+1:00=10:00,12:00—10:00=2(小时),还有两小时!这时我发现没面条了,于是带了30元去新生力商场买面条。
到了商场,我看见有两种面条供我选择,一种是450克,4.5元,一种是400克,是第一种面条的价钱的3分之2,4.5÷3=1.5(元),1.5×2=3(元),我一个人在家吃饭,一点点就够了,于是我选择了第2种面条,还节省了父母的血汗钱,一举两得,我突然又想起来妈妈让我买五个羽毛球,羽毛球两元一个,5×2=10(元),10+3=13(元),30—13=17(元),唉,没办法,本来想剩多点的,现在只能剩这么多了。
回到家里,10;20分,我先准备好了两个鸡蛋,然后看电视去了。
时间一晃到了12:00,我连忙下面条,打鸡蛋,过了20分钟,一碗热气腾腾的面条煮好了,我狼吞虎咽地吃完了面条,疲倦的上床睡午觉了。
睡完午觉醒来4:00了,还差两个小时爸爸妈妈就要回来了,我无事可干,突然看见一堆没洗的衣服,我立刻冲过去开始洗衣服。
我每洗一件衣服要五分钟,一共有八件衣服,我把八件衣服平均分成两堆,8÷2=4(件),每堆四件衣服,我一共要8×5=40(分钟)才能洗完衣服,没办法,只能硬着头皮往下洗了。
洗完衣服已是5:00钟了,洗衣服40分钟,再加上醒来活动了十分钟,爸妈提早回来了,看见了我所做的一切,都直夸我能干呢!
这次“小鬼当家”的经历太有趣了,不仅增强了我的自立性还让我懂得了怎样用数学知识更好地为父母理财了呢!
到了商场,我看见有两种面条供我选择,一种是450克,4.5元,一种是400克,是第一种面条的价钱的3分之2,4.5÷3=1.5(元),1.5×2=3(元),我一个人在家吃饭,一点点就够了,于是我选择了第2种面条,还节省了父母的血汗钱,一举两得,我突然又想起来妈妈让我买五个羽毛球,羽毛球两元一个,5×2=10(元),10+3=13(元),30—13=17(元),唉,没办法,本来想剩多点的,现在只能剩这么多了。
回到家里,10;20分,我先准备好了两个鸡蛋,然后看电视去了。
时间一晃到了12:00,我连忙下面条,打鸡蛋,过了20分钟,一碗热气腾腾的面条煮好了,我狼吞虎咽地吃完了面条,疲倦的上床睡午觉了。
睡完午觉醒来4:00了,还差两个小时爸爸妈妈就要回来了,我无事可干,突然看见一堆没洗的衣服,我立刻冲过去开始洗衣服。
我每洗一件衣服要五分钟,一共有八件衣服,我把八件衣服平均分成两堆,8÷2=4(件),每堆四件衣服,我一共要8×5=40(分钟)才能洗完衣服,没办法,只能硬着头皮往下洗了。
洗完衣服已是5:00钟了,洗衣服40分钟,再加上醒来活动了十分钟,爸妈提早回来了,看见了我所做的一切,都直夸我能干呢!
这次“小鬼当家”的经历太有趣了,不仅增强了我的自立性还让我懂得了怎样用数学知识更好地为父母理财了呢!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
六年级学生数学日记
月日 星期
利用除法来比较分数的大小
今天阳光明媚,我正在家中看《小学数学奥林匹克》忽然发现这样一道题:比较1111/111,11111/1111两个分数的大小。顿时,我来了兴趣,拿起笔在演草纸上“刷刷”地画了起来,不一会儿,便找到了一种解法。那就是把这两个假分数化成带分数,然后利用分数的规律,同分子 分数,分母越小,这个分数就越大。解出1111/111<11111/1111。解完之后,我高兴极了,自夸道:“看来,什么难题都难不倒我了。”正在织毛衣的妈妈听了我的话,看了看题目,大声笑道:“哟,我还以为有多难题来,不就是简单的比较分数大小吗?”听了妈妈的话,我立刻生气起来,说:“什么呀 ,这题就是难。”说完我又讽刺起妈妈来:“你多高啊,就这题对你来说还不是小菜啊!”妈妈笑了:“好了,好了,不跟你闹了,不过你要能用两种方法解这题,那就算高水平了。”我听了妈妈的话又看了看这道题,还不禁愣了一下“还有一种解法。”我惊讶地说道。“当然了”妈妈说道,“怎么样,不会做了吧,看来你还是低水平。”我扣了妈妈的话生气极了,为了证明我是高水平的人我又做了起来。终于经过我的一番努力,第二种方法出来了,那就是用除法来比较它们之间的大小。你看,一个数如果小于另一个数,那么这个数除以另一个数商一定是真分数,同理,一个数如果大于另一个数,那么这个数除以另一个数,商一定大于1。利用这个规律,我用1111/111÷11111/1111,由于这些数太大,所以不能直接相乘,于是我又把这个除法算式改了一下,假设有8个1,让你组成两个数,两个数乘积最大的是多少。不用说,一定是两个最接近的,所以1111/111÷11111/1111=1111/111×1111/11111、1111×1111>111×11111,那么也就是1111/111>11111/1111。
月日 星期
今天,我在数学1+2训练上看到这么一题,在一底面积为648平方厘米的立方体铸体中,以相对的两面为底去掉最大的一个圆柱体,求剩下的立体图形面积是多少?
看到这个题目,我犯糊涂了,想:只告诉一个底面积,这怎么求啊?坐在椅子上的妈妈看了,嘲笑我说:“哼,还说高水平哩,连这道题都不会做。”
我知道妈妈用的是激将法,目的是激怒我的好胜心,让我把这题做完。为了让妈妈认为她的激将法成功了,我就硬着头皮做了下去,可是怎么想也理不出头绪来。但是我并没灰心,继续做了下去,我做了出来。
根据图(要画图)可以发现,切掉一个圆柱,又出来一个同原来圆柱同样大的洞,虽然这洞与圆柱体体积相同,但是它们的表面积并不相同,而是比原来圆柱少了两个底面的面积。
所以剩下的图形面积应该等于正方体6个面的面积减去圆柱的两个底面+圆柱的侧面。
列算式是628×6-628×3.14÷4×2+628×3.14
月日 星期
今天又是一个阳光明媚的日子,我在大街上闲逛,突然看到不远处有很多人围在一起。我跑过去一年,原来是抓奖游戏。“哼,抓奖有什么好玩的。”我厌烦地说旁边的人一听,连忙说:“抓奖虽不好玩,但有重奖,可吸引人了。”我急切地问:“是什么呀!”“50元钱。”那人噔大眼睛说。一听这话,我可来劲了,“这么诱人的的奖品,说什么,我也得试试。”说完,我便问店主怎么抓法。店主说:“这是24个麻将,麻将下写着12个5,12个10,每次只可抓12个麻将,如果12个麻将标的数总和为60,那么你便可得50元大奖。”我听了也没多卷起了袖子,从兜里掏出5元钱给了店主。
尽管,这可以抓10次,但那份大奖我还是没有拿到。
回到家之后,我想了想,感觉有点不对劲。我想,抓60分,那必须抓得那12个麻将必须都标5,最好的情况就是第1次抓到1个5,第2次抓2个5,第3次抓3个5……第12次抓12个5至少得花去6元钱。但万一抓得那些麻将标的数是10或有的总和是相同的,那么得抓多少次花多少钱。
最后经过一番考虑,终于把问题弄清了,我抓紧到街上找那算帐,可已经跑得无影无踪了。
--
月日 星期
题目:有粗细不同的两枝蜡烛,细蜡烛之长是粗蜡烛之长的2倍,细蜡烛点完需1小时,粗蜡烛点完需2小时。有次停电,将这样的两枝求用过的蜡烛同时点燃,来电时,发现两枝蜡烛所剩的长度一样,问停电多长时间?
解题思路:如高粗蜡烛长为1,燃烧的速度分别为:(1)1÷2=1/2(2)2÷1=2要设停电时间为X小时那么式子就是:1—1/2X=2—2X分析已知细蜡烛占粗蜡烛的1/2,粗蜡烛就是细蜡烛的2倍,求停电多少小时,也就是第一根燃烧多少时。
解:设停电时间为X小时。
1—1/2X=2—2X
X=2/3
答:停电时间为2/3小时。
--------------------------------------------------------------------------------
--
月1日星期
今天下午,我在《小学生双色课课通》上看到了这样一道题。
一个圆锥底面半径是8分米,高的长度与底面半径的比3:2,这个圆锥的体积是多少立方分米?
分析:这是一道按比例分配的应用题与圆锥方面的题相结合的应用题。求圆锥的体积是多少,要知道圆锥的底面积和高,题中告诉了底面半径,可求出底面积,而高却不知道,可以根据一个条件求出,可将比转化成一个数占已知数的几分之几,即可知道高占底面半径的3/2。算出高后,然后根据“V=SH÷3”算出圆锥的体积。
--------------------------------------------------------------------------------
--
月日星期
生活中的小发现
今天早晨,我制作了一个小电灯,用的是两节电池和一根钢丝和一个小电灯泡制做的,先准备了两个电灯泡,生怕晚上玩的时候会闪了。到了晚上,我出去转悠一圈,我拿出了小电灯一照了一圈,我发现有时照出一个面,有时照出的是一条线,这是一次意想不到的小发现,给我带来了兴趣,去探索它到底为什么并且获得了答案。它不但给我带来了对数学的兴趣,又提高了我对生活新的看法,希望大家在生活中,要勤于发现,要做一个善于观察、善于思考的好学生。
月日 星期
这几天我一直在思考着另外一种求圆柱体积的方法,凭着我的感觉我列出了这样一个算式:直径×直径×高×3.14÷4。
放学回到家,我就开始证明这个式子到底对不对,我试了一下,用课本上的解法和我的这种解法来算一个圆柱的体积完全一样,我又试了很多次结果都一样。
我感到非常地纳闹,我的这种解法到底是什么意思,经过我一番的思考和证明发现原来是把圆柱看成一个相当于直径和高相等的正方体。然后求出正方体的体积,再根据圆柱与正方体的比是:3.14∶4就成了一个圆柱的体积了。
这只是我个人的想法,请广大爱好者参与研究,给予指正。
--------------------------------------------------------------------------------
--
月日星期
今天我在看报纸的时候看见了这样一个题目:求圆锥的表面积。
[题目]一个圆锥,底面直径是6米,圆锥的顶点到底面圆周上任点长是5米,求这个圆锥的表面积。
我虽没有学习过求圆锥的表面积,但已经学习过圆柱的表面积,通过圆柱的表面积的解题方法知道:圆柱的表面积等于一个侧面加上两个底面积,而圆锥的表面积就是一个侧面积加上一个底面积,侧面是一个扇形,我虽没学过但我查了资料知道求扇形的面积是:扇形的面积=弧长×圆半径×1/2,题目中已经告诉了我们圆锥顶点到底面圆周上任一点长是5米,而弧长是3.14×6=18.84(米),扇形面积是18.84×5×1/2=47.1(平方米),最后用扇形面积加上底面积,就得到圆锥的表面积:47.1+3.14×(6/2)×(6/2)=75.36(平方米)。
数学是思维的体操,我们只要勤学善思,就一定会攻克难题,走上成功之路!
月日 星期
今天,我学习了比例的基本性质,我感到万分的不解,为什么比例的外项之积等于内项之积。我经过了冥思苦想终天明白了。
假如 b/a=c/d,将a扩大d倍,要想使比值不变,也必须将b扩大a倍,也就变成了bd/ad;再把等号右边比中的d扩大a倍,要想使比值不变,也要把c扩大a倍,就变成了ca/da。那么比例就变成了bd/ad=ca/da,把等号左右的ad消去,所以就变成了ad=ca。
月日星期
每逢清明节,巨山上便会人山人海,于是一些骗子便想出了一些骗人的把戏来骗人,比如:像圆盘赌物。
道具非常简单,在一块木板上画一个大圆,大圆中心用钉子固定一根可以转动的指针。大圆被分成24个相等的格,格内的针可以转,格内分别写着1—24个相等的数,在单数格中没有值钱的,而双数中差不多都是值钱的。
玩法也很简单,把指针先拨到1,然后你拨动指针,指针就开始旋转,最后停在某个格内,接着再按着指针所在的格上标的数,再把指针拨动,N-1格,N是格子上所标的数。
这只不过是一个小小的数学游戏,其实你无论拨到哪格,只能吃亏,不能得利。因为当指针转到奇数格上,拨动的格数便是奇数-1=偶数,奇数+偶数只等于奇数,所以不可能转到偶数格上,就得不到值钱的东西,假如指针转到偶数格上,拨动的格数便是偶数-1=奇数,奇数+偶数=奇数,还不能得到值钱的东西。
月日 星期
今天我听了一节用多媒体进行教学《质数和合数》的一堂公开课,听后彼有一番感慨,本来运用多媒体进行教学是为了帮助教者的一种组织手段,能够更好得为教学服务,增加教学的新颖性、独特性、深化性,更加具有吸引性,这么长一段时间提出对学生进行素质化教学,但是听了几节运用多媒体进行教学的课,却都流露出注入式的影子,不错注入教学以前已经扎根,但我们一定在平时的教学中得慢慢改之;另一方面运用多媒体教学更能调动学生的积极性,教学是围绕学生服务的并不是围绕计算机服务。是否能引出广大一线教师的共鸣!
月日星期
今天是一个阳光明媚的中午,我正在家里看数学报,无意中看到求比值与化简比这个题目,我想这不是上学期学过的吗?但是我又一想,我还是看一看吧!
“求比值”与“化简比”之间既有区别,又有联系。同学们学习时,要注意以下几点:
1、求比值的目的是求一比的前项除以后项的结果;化简比的目的是把一比化成和它相等并且前、后项互质的整数比。
2、求比值与化简比的方法类似。有以下几种:
(1)运用比的基本性质。如:
5/6∶1/2=(5/6×6)∶(1/2×6)①比值为5/3;②化简比为5∶3。
(2)运用比与除法的关系。如:
6.3∶0.9=6.3÷0.9①比值为7;②化简比为7∶1。
(3)运用比与分数的关系。如:
16∶20=16/20=4/5①比值为4/5或0.8;②化简比为4∶5。
3、求比值的结果是一个数,可以是整数,也可以是小数和分数;化简比的结果是一个比,它可以写成真分数或假分数的形式(见上例),不能写成整数、小数或带分数的,化简比的结果要读成几比几,如:16∶20化简比为4/5,应读作:4∶5。
通过这就可看出,只要我们多看一些关于数学方面的资料,你的成绩会提高的。
月日 星期
利用除法来比较分数的大小
今天阳光明媚,我正在家中看《小学数学奥林匹克》忽然发现这样一道题:比较1111/111,11111/1111两个分数的大小。顿时,我来了兴趣,拿起笔在演草纸上“刷刷”地画了起来,不一会儿,便找到了一种解法。那就是把这两个假分数化成带分数,然后利用分数的规律,同分子 分数,分母越小,这个分数就越大。解出1111/111<11111/1111。解完之后,我高兴极了,自夸道:“看来,什么难题都难不倒我了。”正在织毛衣的妈妈听了我的话,看了看题目,大声笑道:“哟,我还以为有多难题来,不就是简单的比较分数大小吗?”听了妈妈的话,我立刻生气起来,说:“什么呀 ,这题就是难。”说完我又讽刺起妈妈来:“你多高啊,就这题对你来说还不是小菜啊!”妈妈笑了:“好了,好了,不跟你闹了,不过你要能用两种方法解这题,那就算高水平了。”我听了妈妈的话又看了看这道题,还不禁愣了一下“还有一种解法。”我惊讶地说道。“当然了”妈妈说道,“怎么样,不会做了吧,看来你还是低水平。”我扣了妈妈的话生气极了,为了证明我是高水平的人我又做了起来。终于经过我的一番努力,第二种方法出来了,那就是用除法来比较它们之间的大小。你看,一个数如果小于另一个数,那么这个数除以另一个数商一定是真分数,同理,一个数如果大于另一个数,那么这个数除以另一个数,商一定大于1。利用这个规律,我用1111/111÷11111/1111,由于这些数太大,所以不能直接相乘,于是我又把这个除法算式改了一下,假设有8个1,让你组成两个数,两个数乘积最大的是多少。不用说,一定是两个最接近的,所以1111/111÷11111/1111=1111/111×1111/11111、1111×1111>111×11111,那么也就是1111/111>11111/1111。
月日 星期
今天,我在数学1+2训练上看到这么一题,在一底面积为648平方厘米的立方体铸体中,以相对的两面为底去掉最大的一个圆柱体,求剩下的立体图形面积是多少?
看到这个题目,我犯糊涂了,想:只告诉一个底面积,这怎么求啊?坐在椅子上的妈妈看了,嘲笑我说:“哼,还说高水平哩,连这道题都不会做。”
我知道妈妈用的是激将法,目的是激怒我的好胜心,让我把这题做完。为了让妈妈认为她的激将法成功了,我就硬着头皮做了下去,可是怎么想也理不出头绪来。但是我并没灰心,继续做了下去,我做了出来。
根据图(要画图)可以发现,切掉一个圆柱,又出来一个同原来圆柱同样大的洞,虽然这洞与圆柱体体积相同,但是它们的表面积并不相同,而是比原来圆柱少了两个底面的面积。
所以剩下的图形面积应该等于正方体6个面的面积减去圆柱的两个底面+圆柱的侧面。
列算式是628×6-628×3.14÷4×2+628×3.14
月日 星期
今天又是一个阳光明媚的日子,我在大街上闲逛,突然看到不远处有很多人围在一起。我跑过去一年,原来是抓奖游戏。“哼,抓奖有什么好玩的。”我厌烦地说旁边的人一听,连忙说:“抓奖虽不好玩,但有重奖,可吸引人了。”我急切地问:“是什么呀!”“50元钱。”那人噔大眼睛说。一听这话,我可来劲了,“这么诱人的的奖品,说什么,我也得试试。”说完,我便问店主怎么抓法。店主说:“这是24个麻将,麻将下写着12个5,12个10,每次只可抓12个麻将,如果12个麻将标的数总和为60,那么你便可得50元大奖。”我听了也没多卷起了袖子,从兜里掏出5元钱给了店主。
尽管,这可以抓10次,但那份大奖我还是没有拿到。
回到家之后,我想了想,感觉有点不对劲。我想,抓60分,那必须抓得那12个麻将必须都标5,最好的情况就是第1次抓到1个5,第2次抓2个5,第3次抓3个5……第12次抓12个5至少得花去6元钱。但万一抓得那些麻将标的数是10或有的总和是相同的,那么得抓多少次花多少钱。
最后经过一番考虑,终于把问题弄清了,我抓紧到街上找那算帐,可已经跑得无影无踪了。
--
月日 星期
题目:有粗细不同的两枝蜡烛,细蜡烛之长是粗蜡烛之长的2倍,细蜡烛点完需1小时,粗蜡烛点完需2小时。有次停电,将这样的两枝求用过的蜡烛同时点燃,来电时,发现两枝蜡烛所剩的长度一样,问停电多长时间?
解题思路:如高粗蜡烛长为1,燃烧的速度分别为:(1)1÷2=1/2(2)2÷1=2要设停电时间为X小时那么式子就是:1—1/2X=2—2X分析已知细蜡烛占粗蜡烛的1/2,粗蜡烛就是细蜡烛的2倍,求停电多少小时,也就是第一根燃烧多少时。
解:设停电时间为X小时。
1—1/2X=2—2X
X=2/3
答:停电时间为2/3小时。
--------------------------------------------------------------------------------
--
月1日星期
今天下午,我在《小学生双色课课通》上看到了这样一道题。
一个圆锥底面半径是8分米,高的长度与底面半径的比3:2,这个圆锥的体积是多少立方分米?
分析:这是一道按比例分配的应用题与圆锥方面的题相结合的应用题。求圆锥的体积是多少,要知道圆锥的底面积和高,题中告诉了底面半径,可求出底面积,而高却不知道,可以根据一个条件求出,可将比转化成一个数占已知数的几分之几,即可知道高占底面半径的3/2。算出高后,然后根据“V=SH÷3”算出圆锥的体积。
--------------------------------------------------------------------------------
--
月日星期
生活中的小发现
今天早晨,我制作了一个小电灯,用的是两节电池和一根钢丝和一个小电灯泡制做的,先准备了两个电灯泡,生怕晚上玩的时候会闪了。到了晚上,我出去转悠一圈,我拿出了小电灯一照了一圈,我发现有时照出一个面,有时照出的是一条线,这是一次意想不到的小发现,给我带来了兴趣,去探索它到底为什么并且获得了答案。它不但给我带来了对数学的兴趣,又提高了我对生活新的看法,希望大家在生活中,要勤于发现,要做一个善于观察、善于思考的好学生。
月日 星期
这几天我一直在思考着另外一种求圆柱体积的方法,凭着我的感觉我列出了这样一个算式:直径×直径×高×3.14÷4。
放学回到家,我就开始证明这个式子到底对不对,我试了一下,用课本上的解法和我的这种解法来算一个圆柱的体积完全一样,我又试了很多次结果都一样。
我感到非常地纳闹,我的这种解法到底是什么意思,经过我一番的思考和证明发现原来是把圆柱看成一个相当于直径和高相等的正方体。然后求出正方体的体积,再根据圆柱与正方体的比是:3.14∶4就成了一个圆柱的体积了。
这只是我个人的想法,请广大爱好者参与研究,给予指正。
--------------------------------------------------------------------------------
--
月日星期
今天我在看报纸的时候看见了这样一个题目:求圆锥的表面积。
[题目]一个圆锥,底面直径是6米,圆锥的顶点到底面圆周上任点长是5米,求这个圆锥的表面积。
我虽没有学习过求圆锥的表面积,但已经学习过圆柱的表面积,通过圆柱的表面积的解题方法知道:圆柱的表面积等于一个侧面加上两个底面积,而圆锥的表面积就是一个侧面积加上一个底面积,侧面是一个扇形,我虽没学过但我查了资料知道求扇形的面积是:扇形的面积=弧长×圆半径×1/2,题目中已经告诉了我们圆锥顶点到底面圆周上任一点长是5米,而弧长是3.14×6=18.84(米),扇形面积是18.84×5×1/2=47.1(平方米),最后用扇形面积加上底面积,就得到圆锥的表面积:47.1+3.14×(6/2)×(6/2)=75.36(平方米)。
数学是思维的体操,我们只要勤学善思,就一定会攻克难题,走上成功之路!
月日 星期
今天,我学习了比例的基本性质,我感到万分的不解,为什么比例的外项之积等于内项之积。我经过了冥思苦想终天明白了。
假如 b/a=c/d,将a扩大d倍,要想使比值不变,也必须将b扩大a倍,也就变成了bd/ad;再把等号右边比中的d扩大a倍,要想使比值不变,也要把c扩大a倍,就变成了ca/da。那么比例就变成了bd/ad=ca/da,把等号左右的ad消去,所以就变成了ad=ca。
月日星期
每逢清明节,巨山上便会人山人海,于是一些骗子便想出了一些骗人的把戏来骗人,比如:像圆盘赌物。
道具非常简单,在一块木板上画一个大圆,大圆中心用钉子固定一根可以转动的指针。大圆被分成24个相等的格,格内的针可以转,格内分别写着1—24个相等的数,在单数格中没有值钱的,而双数中差不多都是值钱的。
玩法也很简单,把指针先拨到1,然后你拨动指针,指针就开始旋转,最后停在某个格内,接着再按着指针所在的格上标的数,再把指针拨动,N-1格,N是格子上所标的数。
这只不过是一个小小的数学游戏,其实你无论拨到哪格,只能吃亏,不能得利。因为当指针转到奇数格上,拨动的格数便是奇数-1=偶数,奇数+偶数只等于奇数,所以不可能转到偶数格上,就得不到值钱的东西,假如指针转到偶数格上,拨动的格数便是偶数-1=奇数,奇数+偶数=奇数,还不能得到值钱的东西。
月日 星期
今天我听了一节用多媒体进行教学《质数和合数》的一堂公开课,听后彼有一番感慨,本来运用多媒体进行教学是为了帮助教者的一种组织手段,能够更好得为教学服务,增加教学的新颖性、独特性、深化性,更加具有吸引性,这么长一段时间提出对学生进行素质化教学,但是听了几节运用多媒体进行教学的课,却都流露出注入式的影子,不错注入教学以前已经扎根,但我们一定在平时的教学中得慢慢改之;另一方面运用多媒体教学更能调动学生的积极性,教学是围绕学生服务的并不是围绕计算机服务。是否能引出广大一线教师的共鸣!
月日星期
今天是一个阳光明媚的中午,我正在家里看数学报,无意中看到求比值与化简比这个题目,我想这不是上学期学过的吗?但是我又一想,我还是看一看吧!
“求比值”与“化简比”之间既有区别,又有联系。同学们学习时,要注意以下几点:
1、求比值的目的是求一比的前项除以后项的结果;化简比的目的是把一比化成和它相等并且前、后项互质的整数比。
2、求比值与化简比的方法类似。有以下几种:
(1)运用比的基本性质。如:
5/6∶1/2=(5/6×6)∶(1/2×6)①比值为5/3;②化简比为5∶3。
(2)运用比与除法的关系。如:
6.3∶0.9=6.3÷0.9①比值为7;②化简比为7∶1。
(3)运用比与分数的关系。如:
16∶20=16/20=4/5①比值为4/5或0.8;②化简比为4∶5。
3、求比值的结果是一个数,可以是整数,也可以是小数和分数;化简比的结果是一个比,它可以写成真分数或假分数的形式(见上例),不能写成整数、小数或带分数的,化简比的结果要读成几比几,如:16∶20化简比为4/5,应读作:4∶5。
通过这就可看出,只要我们多看一些关于数学方面的资料,你的成绩会提高的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询