勾股定理的逆定理 20

证明:以m^2+n^2,m^2-n^2,2mn(m,n均为正整数,m>n)为边的三角形是直角三角形.... 证明:以m^2+n^2,m^2-n^2,2mn(m,n均为正整数,m>n)为边的三角形是直角三角形. 展开
 我来答
内蒙古恒学教育
2022-11-10 · 专注于教育培训升学规划
内蒙古恒学教育
向TA提问
展开全部
如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。
最长边所对的角为直角。勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。
若c为最长边,且a_+b_=c_,则△ABC是直角三角形。如果a_+b_>c_,则△ABC是锐角三角形。如果a_+b_<c_,则△ABC是钝角三角形。
勾股定理是一个基本的几何定理,在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;br三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。
洋葱学园
2022-07-19 · 原洋葱数学。好课上洋葱,学习更主动
洋葱学园
向TA提问
展开全部
勾股定理的逆定理证明


勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。若c为最长边,且a_+b_=c_,则ΔABC是直角三角形;如果a_+b_>c_,则ΔABC是锐角三角形;如果a_+b_
根据余弦定理,在△ABC中,cosC=(a_+b_-c_)÷2ab。
由于a_+b_=c_,故cosC=0;
因为0°<∠C<180°,所以∠C=90°。(证明完毕)
已知在△ABC中,,求证∠C=90°
证明:作AH⊥BC于H
⑴若∠C为锐角,设BH=y,AH=x
得x_+y_=c_,
又∵a_+b_=c_,
∴a_+b_=x_+y_(A)
但a>y,b>x,∴a_+b_>x_+y_(B)
(A)与(B)矛盾,∴∠C不为锐角
⑵若∠C为钝角,设HC=y,AH=x
得a_+b_=c_=x_+(a+y)_=x_+y_+2ay+a_
∵x_+y_=b_,
得a_+b_=c_=a_+b_+2ay
2ay=0
∵a≠0,∴y=0
这与∠C是钝角相矛盾,∴∠C不为钝角
综上所述,∠C必为直角
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
tanxiangsiyao
2011-02-13
知道答主
回答量:4
采纳率:0%
帮助的人:5145
展开全部
(m^2-n^2)^2+(2mn)^2=m^4-2m^2n^2+n^4+4m^2n^2=m^4+2m^2n^2+n^4=(m^2-n^2)^2满足勾股定理的逆定理
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
三体迷智子一号B7
高粉答主

2020-09-29 · 每个回答都超有意思的
知道答主
回答量:2.5万
采纳率:1%
帮助的人:1277万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式