展开全部
根据已知条件,椭圆的焦点在x轴上,设椭圆为x²/a²+y²/b²=1,由于离心率e=c/a=√2/2,又a²=b²+c²,那么可以假设椭圆为x²/2+y²=b²,直线与椭圆交于2点,设两点坐标为P(x1,y1)和Q(x2,y2),则OP,OQ向量为(x1,y1)和Q(x2,y2),因为OP,OQ垂直,两向量点击后为0,则x1x2+y1y2=0。将直线和椭圆联立,x²+2(x+1)²=2b²,整理后得3x²+4x+2-2b²=0,根据韦达定理,x1x2=(2-2b²)/3,同理,y1y2=(1-2b²)/3,所以x1x2+y1y2=(3-4b²)/3=0,b²=3/4,a²=3/2,椭圆方程为x²/(3/2)+y²/(4/3)=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询