设a>0为常数,已知函数f(x)=cos平方(x-2π/3)+sin平方(x-5π/6)+asinx/2cosx/2的最大值为2,求a的值。
1个回答
展开全部
f(x)=(cos(x-2π/3))^2+(sin(x-5π/6))^2+asin(x/2)cos(x/2)
=(cosx*cos(2π/3)+sinx*sin(2π/3))^2+(sinxcos(5π/6)-cosxsin(5π/6))^2+a/2*sinx
=(-1/2*cosx+√3/2*sinx)^2+(-√3/2*sinx-1/2*cosx)^2+a/2*sinx
=1/4*(cosx)^2-√3/2*sinxcosx+3/4*(sinx)^2++3/4*(sinx)^2+√3/2*sinxcosx+1/4*(cosx)^2+a/2*sinx
=1/2*(cosx)^2+3/2*(sinx)^2+a/2*sinx
=1/2+(sinx)^2+a/2*sinx
=1/2+(sinx+a/4)^2-a^2/16
当 a>=0时 sinx取1时达到最大值,这时 f(x)=1/2+1+a/2=2,解得 a=1
当 a<0时 sinx取-1时达到最大值,这时, f(x)=1/2+1-a/2=a ,解得 a=-1
所以 a=±1
=(cosx*cos(2π/3)+sinx*sin(2π/3))^2+(sinxcos(5π/6)-cosxsin(5π/6))^2+a/2*sinx
=(-1/2*cosx+√3/2*sinx)^2+(-√3/2*sinx-1/2*cosx)^2+a/2*sinx
=1/4*(cosx)^2-√3/2*sinxcosx+3/4*(sinx)^2++3/4*(sinx)^2+√3/2*sinxcosx+1/4*(cosx)^2+a/2*sinx
=1/2*(cosx)^2+3/2*(sinx)^2+a/2*sinx
=1/2+(sinx)^2+a/2*sinx
=1/2+(sinx+a/4)^2-a^2/16
当 a>=0时 sinx取1时达到最大值,这时 f(x)=1/2+1+a/2=2,解得 a=1
当 a<0时 sinx取-1时达到最大值,这时, f(x)=1/2+1-a/2=a ,解得 a=-1
所以 a=±1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询