已知向量a=(cosx,sinx) b=(-cosx,根号3/2cosx) c=(-1,0)

已知向量a=(cosx,sinx)b=(-cosx,根号3/2cosx)c=(-1,0)1。当x=π/6时将c用a,b表示2。已知f(x)=2a·b+2求f(x)的减区间... 已知向量a=(cosx,sinx) b=(-cosx,根号3/2cosx) c=(-1,0)
1。当x=π/6时 将c用a,b 表示
2。已知f(x)=2a·b+2 求f(x)的减区间和对称中心及f(x)在x∈[0,π/2]时的值域
3。在(2)的条件下y=f(x)可由y=cosx经过怎样的平移和伸缩变化而得到

详细过程 谢谢
没错啊 我知道很麻烦啊 容易了老师会让我们做么。。。- -
展开
irisofwc
2011-02-13 · TA获得超过128个赞
知道答主
回答量:89
采纳率:0%
帮助的人:138万
展开全部
1)x=π/6,则a=(√3/2,1/2) b=(-√3/2,3/2),
令c=na+mb,解得n=-√3/2,m=√3/6,所以c=(-√3/2)a+(√3/6)b
2)f(x)=2(cosx)^2+√3sinxcosx+2=1+cos2x+√3/2*sin2x+2=cos2x+√3/2sin2x+3=√7/2*sin(2x+arctan2√3/3)+3,那么
递减区间为[π/4-1/2*arctan2√3/3,3π/4-1/2*arctan2√3/3],
对称中心为(-1/2*arctan2√3/3+kπ/2, 0)
f(x)在x∈[0,π/2]时的值域[3-√7/2, 2]
3)f(x)=√7/2*sin(2x+arctan2√3/3)+3=√7/2*cos(2x+arctan2√3/3+π/2)+3,
可由y=cosx先将y=cosx的图像上的各点纵坐标伸长到原来的√7/2倍,
再将y=√7/2cosx的图像上的各点向左平移arctan2√3/3+π/2单位,
然后将y=√7/2cos(x+arctan2√3/3+π/2)的各点的横坐标缩短到原来的1/2,
最后把所得图像向上平移3个单位
镂天上肤
2011-02-13 · TA获得超过272个赞
知道小有建树答主
回答量:320
采纳率:0%
帮助的人:167万
展开全部
你确定题目没有错么?算起来很麻烦,。。。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式