观察下列式子有什么规律?怎么计算? 1+1/1+2 + 1/1+2+3 + 1/1+2+3+4 + ……1/1+2+3+……+100
是一个分数题1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+……+1/(1+2+3+……+100)上面的打错了~~...
是一个分数题
1+1/(1+2) + 1/(1+2+3) + 1/(1+2+3+4 )+ …… + 1/(1+2+3+……+100 )
上面的打错了~~ 展开
1+1/(1+2) + 1/(1+2+3) + 1/(1+2+3+4 )+ …… + 1/(1+2+3+……+100 )
上面的打错了~~ 展开
2个回答
展开全部
1+2=2*3/2
1+2+3=3*4/2
1+2+3+4=4*5/2
1+2+3+……+100=100*101/2
所以,
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+...+100)
=1+2/(2*3)+2/(3*4)+2/(4*5)+……+2/(100*101)
=2[(1/2+1/(2*3)+1/(3*4)+1/(4*5)+……+1/(100*101)〕
因为:
1/(2*3)=1/2-1/3;
1/(3*4)=1/3-1/4;
1/(4*5)=1/4-1/5;
……
1/(100*101)=1/2006-1/101
所以,
原式=2(1/2+1/2-1/3+1/3-1/4+1/4-1/5+……+1/100-1/101)
=2(1-1/101)
=2*100/101
=200/101
检查下吧,可能有打错的...
1+2+3=3*4/2
1+2+3+4=4*5/2
1+2+3+……+100=100*101/2
所以,
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+...+100)
=1+2/(2*3)+2/(3*4)+2/(4*5)+……+2/(100*101)
=2[(1/2+1/(2*3)+1/(3*4)+1/(4*5)+……+1/(100*101)〕
因为:
1/(2*3)=1/2-1/3;
1/(3*4)=1/3-1/4;
1/(4*5)=1/4-1/5;
……
1/(100*101)=1/2006-1/101
所以,
原式=2(1/2+1/2-1/3+1/3-1/4+1/4-1/5+……+1/100-1/101)
=2(1-1/101)
=2*100/101
=200/101
检查下吧,可能有打错的...
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询