已知圆C方程为x²+y²-2x-4y-20=0,直线l的方程为:(2m+1)x+(m+1)y-7m-4=0. 证明:无论m取何

圆C恒有两个公共点。2、求直线l被圆C截得的线段的最短长度,并求出此时m的值... 圆C恒有两个公共点。
2、求直线l被圆C截得的线段的最短长度,并求出此时m的值
展开
墨羽2010
2011-02-14 · TA获得超过1467个赞
知道小有建树答主
回答量:239
采纳率:0%
帮助的人:401万
展开全部
1、将直线方程化为:m(2x+y-7)+(x+y-4)=0,不论m取何值,直线总过定点,令2x+y-7=0,x+y-4=0
解得x=3,y=1,所以直线过定点(3,1),将点(3,1)代入圆方程左边可知<0,所以点(3,1)在圆内
所以直线与圆相交,直线与圆恒有两个公共点
2、当直线与过A(3,1)点的直径垂直时,直线l被圆C截得的线段的最短,圆心C(1,2),
AC的斜率= -1/2,所以L的斜率=2,所以 - (2m+1)/(m+1)=2,所以m= - 3/4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式