~高二数学题求解(两道)~~ 20
1.某河有抛物线形拱桥,当水面距离拱顶5m时,水面宽8m,一搜木船宽4m,高2m,载货后船露在水面上的部分高为0.75m.问:水面上涨到距离抛物线拱顶多少米时,木船开始不...
1.某河有抛物线形拱桥,当水面距离拱顶5m时,水面宽8m,一搜木船宽4m,高2m,载货后船露在水面上的部分高为0.75m.问:水面上涨到距离抛物线拱顶多少米时,木船开始不能通航?
2.已知抛物线y=2px(p>0)上有两动点A,B及一个定点M(a,b),F是抛物线焦点,且AF,MF,BF的长成等差数列.(1)求证:线段AB的垂直平分线过定点Q(a+p,0);(2)若MF=4, OQ=6(O为原点),求抛物线方程.
实在做不出来,望君台帮忙!!多谢!!!! 展开
2.已知抛物线y=2px(p>0)上有两动点A,B及一个定点M(a,b),F是抛物线焦点,且AF,MF,BF的长成等差数列.(1)求证:线段AB的垂直平分线过定点Q(a+p,0);(2)若MF=4, OQ=6(O为原点),求抛物线方程.
实在做不出来,望君台帮忙!!多谢!!!! 展开
1个回答
展开全部
1、假设y=-ax^2,由于-5=-a*4^2,所以a=5/16,船宽4m,所以船顶离拱顶至少要a*2^2即5/4=1.25米,所以水涨到离拱顶1.25+0.75=2米时,木船不能通航。
2、准线为x=-p/2
假设A(2pcc,2pc),B(2pdd,2pd),
则AF=2pcc+0.5p,MF=a+0.5p,BF=2pdd+0.5p,它们成等差数列,可知2pcc+2pdd+p=2a+p,推出c^2+d^2=a/p。
AQ^2=(2pcc-a-p)^2+(2pc)^2
BQ^2=(2pdd-a-p)^2+(2pd)^2=(2a-2pcc-a-p)^2+4pa-4ppcc=(a-p)^2+4ppc^4-4apcc+4ppcc+4pa-4ppcc=(a+p)^2+4ppc^4-4apcc=AQ^2,所以AB垂直平分线过Q。
若MF=a+0.5p=4,a+p=6,则p=4,y=8x^2
其中cc表示c^2。
2、准线为x=-p/2
假设A(2pcc,2pc),B(2pdd,2pd),
则AF=2pcc+0.5p,MF=a+0.5p,BF=2pdd+0.5p,它们成等差数列,可知2pcc+2pdd+p=2a+p,推出c^2+d^2=a/p。
AQ^2=(2pcc-a-p)^2+(2pc)^2
BQ^2=(2pdd-a-p)^2+(2pd)^2=(2a-2pcc-a-p)^2+4pa-4ppcc=(a-p)^2+4ppc^4-4apcc+4ppcc+4pa-4ppcc=(a+p)^2+4ppc^4-4apcc=AQ^2,所以AB垂直平分线过Q。
若MF=a+0.5p=4,a+p=6,则p=4,y=8x^2
其中cc表示c^2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询