2个回答
2011-02-14 · 知道合伙人教育行家
关注
展开全部
f(x)=-acos2x-(2√3)asinxcosx+2a+b
= -acos2x-√3asin2x+2a+b
= -2a(sin2x*cosπ/6+cos2x*sinπ/6) +2a+b
= -2a sin(2x+π/6) +2a+b
∵0≤x≤π/2
∴π/6 ≤ 2x+π/6 ≤ 7π/6
2x+π/6 = 7π/6时,sin(2x+π/6)有最小值-1/2;2x+π/6 =π/2时,sin(2x+π/6)有最大值1
∴-1/2≤sin(2x+π/6) ≤1
设a>0:
2x+π/6 =π/2时,最小值f(x)min=-a+2a+b=-5
2x+π/6 = 7π/6时,最大值f(x)max=1/2a+2a+b=1
解得:a=4,b=-9
设a<0:
2x+π/6 = 7π/6时,最小值f(x)min=1/2a+2a+b=-5
2x+π/6 =π/2时,最大值f(x)max=-a+2a+b=1
解得:a=-4,b=5
综上:a=4,b=-9;或a=-4,b=5
= -acos2x-√3asin2x+2a+b
= -2a(sin2x*cosπ/6+cos2x*sinπ/6) +2a+b
= -2a sin(2x+π/6) +2a+b
∵0≤x≤π/2
∴π/6 ≤ 2x+π/6 ≤ 7π/6
2x+π/6 = 7π/6时,sin(2x+π/6)有最小值-1/2;2x+π/6 =π/2时,sin(2x+π/6)有最大值1
∴-1/2≤sin(2x+π/6) ≤1
设a>0:
2x+π/6 =π/2时,最小值f(x)min=-a+2a+b=-5
2x+π/6 = 7π/6时,最大值f(x)max=1/2a+2a+b=1
解得:a=4,b=-9
设a<0:
2x+π/6 = 7π/6时,最小值f(x)min=1/2a+2a+b=-5
2x+π/6 =π/2时,最大值f(x)max=-a+2a+b=1
解得:a=-4,b=5
综上:a=4,b=-9;或a=-4,b=5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询