高中数学选修2-2知识点

sssops
2011-02-14 · TA获得超过249个赞
知道答主
回答量:188
采纳率:0%
帮助的人:0
展开全部
知识点总结
相似三角形的判定及有关性质
相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。
相似三角形的预备定理:如果一条直线平行于三角形的一条边,且这条直线与原三角形的两条边(或其延长线)分别相交,那么所构成的三角形与原三角形相似。
判定定理1:两角对应相等,两三角形相似。
判定定理2:两边对应成比例且夹角相等,两三角形相似。
判定定理3:三边对应成比例,两三角形相似。
直角三角形相似的判定定理:斜边和一条直角边对应成比例,两直角三角形相似。
相似三角形的性质:
相似三角形对应角相等,对应边成比例
相似三角形具有传递性
相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比
相似三角形周长的比等于相似比
相似三角形面积比等于相似比的平方

直线和圆的位置关系
1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.
①Δ>0,直线和圆相交.②Δ=0,直线和圆相切.③Δ<0,直线和圆相离.
方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较.
①d<R,直线和圆相交.②d=R,直线和圆相切.③d>R,直线和圆相离.
2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.
3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.
切线的性质
⑴圆心到切线的距离等于圆的半径;⑵过切点的半径垂直于切线;⑶经过圆心,与切线垂直的直线必经过切点;⑷经过切点,与切线垂直的直线必经过圆心;当一条直线满足(1)过圆心;(2)过切点;(3)垂直于切线三个性质中的两个时,第三个性质也满足.
切线的判定定理
经过半径的外端点并且垂直于这条半径的直线是圆的切线.
切线长定理
从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.

圆锥曲线性质的探讨
一、圆锥曲线的定义
1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。
2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。
3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<E<1< SPAN>时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
二、圆锥曲线的方程
1.椭圆: + =1(a>b>0)或 + =1(a>b>0)(其中,a2=b2+c2)
2.双曲线: - =1(a>0, b>0)或 - =1(a>0, b>0)(其中,c2=a2+b2)
3.抛物线:y2=±2px(p>0),x2=±2py(p>0)
三、圆锥曲线的性质
1.椭圆: + =1(a>b>0)
(1)范围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e= ∈(0,1)(5)准线:x=±
2.双曲线: - =1(a>0, b>0)(1)范围:|x|≥a, y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e= ∈(1,+∞)(5)准线:x=± (6)渐近线:y=± x
3.抛物线:y2=2px(p>0)(1)范围:x≥0, y∈R(2)顶点:(0,0)(3)焦点:( ,0)(4)离心率:e=1(5)准线:x=-

【典型例题】
[例1] 如图△ABC中,∠C,∠B的平分线相交于O,过O作AO的垂线与边AB、AC分别交于D、E,求证:△BDO∽△BOC∽△OEC。

证明:易得AO平分∠BAC,AO⊥DE ∴ ∠ADO=∠AEO ∴ ∠BDO=∠CEO
又∠BDO=90°+ ∠BAC ∠BOC=180°- (∠ABC+∠ACB)
=90°+ ∠BAC∴ ∠BDO=∠BOC 又∠DBO=∠OBC
∴ △BDO∽△BOC 同理△ECO∽△OCB∴ △BDO∽△BOC∽△OEC
[例2] △ABE中,D、C为AB上两点,AC=AE, ,求证:EC平分∠DEB。
证明:∵ AE=AC ∴ 即 又∵∠A=∠A ∴ △EAD∽△BAE ∴ ∠1=∠B ∵ AE=AC
∴ ∠1+∠2=∠ACE 又∵∠3+∠B=∠ACE ∴ ∠2=∠3∴ EC平分∠DEB
[例3] 已知:D、E分别在△ABC的边AC和AB上,BD与CE交于F,其中AE=BE, , ,求 。
证明:取AD中点N,连结EN ∴ EN BD
∴ ∴
∵ ∴ × = ∵ = ∴ = = =11
[例4]如图,直角梯形ABCD中,∠A=∠B=90°,AD‖BC,E为AB上一点,DE平分∠ADC,CE平分∠BCD,以AB为直径的圆与边CD有怎样的位置关系?
解:以AB为直径的圆与CD是相切关系 如图,过E作EF⊥CD,垂足为F.
∵∠A=∠B=90°,∴EA⊥AD,EB⊥BC,∵DE平分∠ADC,CE平分∠BCD,∴ .∴以AB为直径的圆的圆心为E,且 ,∴以AB为直径的圆与边CD相切.
[例5]已知:ΔABC内接于⊙O,过点A作直线EF.
⑴如图甲,AB为直径,要使得EF是⊙O的切线,还需添加的条件是(只需写出三种情况):
①________; ②_________;③_________. ⑵如图乙,AB为非直径的弦,∠CAE=∠B,求证:EF是⊙O的切线.
解:⑴①∠FAB=90°.②∠B=∠EAC.③∠BAE=90°.
⑵连结AO并延长交⊙O于D,连结CD. ∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°. ∵∠D=∠B,∠B=∠CAE,∴∠CAE+∠CAD=90°,即OA⊥EF. 又∵EF经过半径OA的外端A,∴EF为⊙O的切线.
[例6]如图所示,AB=AC,以AB为直径作⊙O,交BC于点D,交AC于点E,过点D作⊙O的切线DF,交AC于F,求证:(1)DF⊥AC,(2)FC=FE.
证明:(1)连结OD,AD.∵ DF为⊙O的切线,
∴ OD⊥DF(切线的性质定理).又∵ AB为⊙O的直径,∴ AD⊥BC.又∵ AB=AC,∴D为BC中点. ∵O为AB中点,∴ ∴ DF⊥AC.
(2)连结DE.则∠DEC=∠B(圆内接四边形的性质),又∵ AB=AC,∴∠B=∠C.
∴∠DEC=∠C,∴ DE=DC.又∵ DF⊥AC,∴ FC=EF(等腰三角形的性质)
[例7]如图:椭圆 + =1(a>b>0),F1为左焦点,A、B是两个顶点,P为椭圆上一点,PF1⊥x轴,且PO//AB,求椭圆的离心率e。
解:设椭圆的右焦点为F2,由第一定义:|PF1|+|PF2|=2a, ∵ PF1⊥x轴,∴ |PF1|2+|F1F2|2=|PF2|2, 即(|PF2|+|PF1|)(|PF2|-|PF1|)=4c2,
∴ |PF1|= 。∵ PO//AB,∴ ΔPF1O∽ΔBOA,
∴ = c=b a= c, ∴ e= = 。
[例8] 已知 、 是椭圆 ( )长轴的两个端点, 是与 垂直的弦.求直线 与 的交点M的轨迹方程.

解 如图,由已知 轴,可设 、 .设动点M( ).∵ ( ,0)、 ( ,0)∴ 方程为 方程为 把上面两个等式左、右分别相乘,可得: 而P ( )又在椭圆上, 即 ,变形为
即 ,代入,可得M点轨迹方程为: .
[例9] 已知椭圆 ,A(1,1),过A的直线 交椭圆于P、Q两点,若 ,求直线 的方程.
解:设P( , ),Q( , )∵ ,由定比分点公式得: ∵ P、Q在椭圆上 ∴
整理得 解得 或
∴ 直线PQ的方程为 或

参考资料: 百度一下

阿也朗达
2011-02-15 · TA获得超过158个赞
知道答主
回答量:120
采纳率:0%
帮助的人:96.7万
展开全部
这本书最重要的是导数和复数,以及数学归纳法.导数主要考切线的求法,用导数求函数的单调区间,函数的极值和最值,所以书上的那几个公式是很重要的,还有用定积分求曲边梯形的面积,那个微积分基本定理要记住,下一章考的很少,主要是数学归纳法,就是假设n=k成立,证明n=k+1是否成立.第三章主要掌握复数的运算,还有复平面的一些知识.你还是重点抓第一章吧!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
iwshakjnhfhwfk
2011-02-17
知道答主
回答量:1
采纳率:0%
帮助的人:0
展开全部
三角函数,圆锥曲线
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式