在△ABC中,BC=2根号5,AC=6,sinC=2sinA, 1.求AB的值, 2. cosA的值

 我来答
fgttyyd
2011-02-15 · 超过38用户采纳过TA的回答
知道答主
回答量:154
采纳率:0%
帮助的人:0
展开全部
解:(1)因BC对应于∠A,AB对应于∠C.
应用正弦定理得:
BC/sinA=AB/sinC
AB=BCsinC/sinA=BC2sinA/sinA=2BC
故,AB=2√5.
(2) sin(2A-π/4)=sin2Acos(π/4)-cos2Asin(π/4)
=[(√2)/2](sin2A-cos2A)
利用余弦定理求角A:
cosA=(AB²+AC²-BC²)/2AB*AC
=[(2√5)²+3²-(√5)²]/2×(2√5)×3
=(20+9-5)/12(√5)
故,cosA=(2√5)/5
sinA=√[1-cos²A]=(√5)/5
sin(2A-π/4)=[(√2)/2][2sinAcosA-(2cos²A-1)]
=[(√2)/2]{2×(√5/5)×(2√5/5)-[2×(2√5/5)²-1]}
整理后得:
sin(2A-π/4)=(√2)/10

参考资料: 百度一下

ranger_ban
2011-02-15 · 超过19用户采纳过TA的回答
知道答主
回答量:113
采纳率:0%
帮助的人:65.8万
展开全部
c=4倍根5,cosA=负10分之根5
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式