高中数学解不等式
已知b,k为自然数且b>(4k*k+1)/4k,b<[20-(k-1)(k-1)]/8求b和k的值。答案:由这两个不等式可得b>k+1/4k>1,而b<20/8(问题:这...
已知b,k为自然数且 b>(4k*k+1)/4k ,b<[20-(k-1)(k-1)]/8 求b和k的值。
答案:由这两个不等式可得b>k+ 1/4k>1 ,而b<20/8 (问题:这一步是怎么得到的??)
k,b为自然数 所以b=2,k=1
答案写的太简单,希望能给解释一下! 展开
答案:由这两个不等式可得b>k+ 1/4k>1 ,而b<20/8 (问题:这一步是怎么得到的??)
k,b为自然数 所以b=2,k=1
答案写的太简单,希望能给解释一下! 展开
展开全部
b>(4k*k+1)/4k =k+1/(4k)>=1均值不等式
b<[20-(k-1)(k-1)]/8<=20/8=2.5
即1<b<2.5
b=2
故(4k*k+1)/4k <2
整理得(k-1)^2<3/4
所以k-1=0,k=1
b<[20-(k-1)(k-1)]/8<=20/8=2.5
即1<b<2.5
b=2
故(4k*k+1)/4k <2
整理得(k-1)^2<3/4
所以k-1=0,k=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(4k*k+1)/4=4k*k/4k+1/4K=k+1/(4k) 因为k为自然数,k》1,所以b>k+ 1/4k>1;
k-1的平方》0,所以[20-(k-1)(k-1)]/8<20/8,所以b<20/8
k-1的平方》0,所以[20-(k-1)(k-1)]/8<20/8,所以b<20/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
k,b 都是自然数 k,b>0
(4k*k+1)/4k= k+1/4k, a*a+b*b>2ab (a不等于b), 所以 k+1/4k>1
[20-(k-1)(k-1)]/8, (k-1)(k-1)>0, 所以 [20-(k-1)(k-1)]/8<20/8
(4k*k+1)/4k= k+1/4k, a*a+b*b>2ab (a不等于b), 所以 k+1/4k>1
[20-(k-1)(k-1)]/8, (k-1)(k-1)>0, 所以 [20-(k-1)(k-1)]/8<20/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询