已知三角形三条边为3,4,6,求三角形的面积。
谢谢各位了,我就是不知道三角形长边c²=a²+b²-2abcosθ(两短边的夹角为θ),以及公式怎么来的。还有海伦公式的由来。...
谢谢各位了,
我就是不知道三角形长边c²=a²+b²-2abcosθ(两短边的夹角为θ),
以及公式怎么来的。
还有海伦公式的由来。 展开
我就是不知道三角形长边c²=a²+b²-2abcosθ(两短边的夹角为θ),
以及公式怎么来的。
还有海伦公式的由来。 展开
4个回答
2011-02-15 · 知道合伙人教育行家
关注
展开全部
设3、4两边的夹角为θ:
6^2=3^2+4^2-2*3*4cosθ
cosθ=-11/24
sinθ=根号[1-(-11/24)^2]=根号455 /24
面积=1/2*3*4*根号455 /24=根号455 /4
【问题补充: 我就是不知道三角形长边c²=a²+b²-2abcosθ(两短边的夹角为θ)】
这个是余弦定理。
推导过程如下:
三角形ABC,做AD⊥BC
CD=ACcosC
AD=ACsinC
BD=BC-CD=BC-ACcosC
AB^2=BD^2+AD^2=(BC-ACcosC)^2+(ACsinC)^2
=BC^2-2BC*AC*cosC+AC^2cos^2C+AC^2sin^2C
=BC^2+AC^2-2BC*AC*cosC
相当于:c²=a²+b²-2abcosC
【面积公式的由来】
三角形ABC,做AD⊥BC
AD=ACsinC
S△ABC=1/2BC*AD=1/2BC*ADsinC=1/2absinC
【海伦公式的由来】
S=1/2*ab*sinC
=1/2*ab*根号(1-cos^2 C)
=1/2*ab*根号[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*根号[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*根号[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
=1/4*根号[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*根号[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
设p=(a+b+c)/2
则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,
上式=根号[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=根号[p(p-a)(p-b)(p-c)]
所以,三角形ABC面积S=根号[p(p-a)(p-b)(p-c)]
6^2=3^2+4^2-2*3*4cosθ
cosθ=-11/24
sinθ=根号[1-(-11/24)^2]=根号455 /24
面积=1/2*3*4*根号455 /24=根号455 /4
【问题补充: 我就是不知道三角形长边c²=a²+b²-2abcosθ(两短边的夹角为θ)】
这个是余弦定理。
推导过程如下:
三角形ABC,做AD⊥BC
CD=ACcosC
AD=ACsinC
BD=BC-CD=BC-ACcosC
AB^2=BD^2+AD^2=(BC-ACcosC)^2+(ACsinC)^2
=BC^2-2BC*AC*cosC+AC^2cos^2C+AC^2sin^2C
=BC^2+AC^2-2BC*AC*cosC
相当于:c²=a²+b²-2abcosC
【面积公式的由来】
三角形ABC,做AD⊥BC
AD=ACsinC
S△ABC=1/2BC*AD=1/2BC*ADsinC=1/2absinC
【海伦公式的由来】
S=1/2*ab*sinC
=1/2*ab*根号(1-cos^2 C)
=1/2*ab*根号[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*根号[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*根号[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
=1/4*根号[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*根号[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
设p=(a+b+c)/2
则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,
上式=根号[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=根号[p(p-a)(p-b)(p-c)]
所以,三角形ABC面积S=根号[p(p-a)(p-b)(p-c)]
展开全部
由海伦公式:s=根号[p(p-a)(p-b)(p-c)],其中p为半周长,a,b,c为三边长,可得面积为根号(455)/4。
若你不熟悉海伦公式,可向长为6的边作高即可。
若你不熟悉海伦公式,可向长为6的边作高即可。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设三角形为△ABC,其中BC=3,AB=4,AC=6
由余弦定理得
cos∠ABC=(4²+3²-6²)/(2*3*4)=-3/8
因为三角形内角范围为(0,180°)
所以sin∠ABC=√1-9/64=√55/8
所以三角形面积为1/2*AB*BC*sin∠ABC=1/2*4*3*√55/8=3√55/4
由余弦定理得
cos∠ABC=(4²+3²-6²)/(2*3*4)=-3/8
因为三角形内角范围为(0,180°)
所以sin∠ABC=√1-9/64=√55/8
所以三角形面积为1/2*AB*BC*sin∠ABC=1/2*4*3*√55/8=3√55/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用海伦公式
p=(3+4+6)/2=6.5
S=根号[6.5(6.5-3)(6.5-4)(6.5-6)]
=(1/4)根号455
p=(3+4+6)/2=6.5
S=根号[6.5(6.5-3)(6.5-4)(6.5-6)]
=(1/4)根号455
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询