如图,E是BC的中点,点A在DE上。且∠BAE=∠CDE求AB=CD 5
2个回答
2013-10-07
展开全部
证明:延长DE到F,使EF=DE,连接BF,
在△DEC和△BEF中
BE=CE
∠BEF=∠CED
EF=DE
,
∴△DEC≌△BEF.
∴∠F=∠CDE,BF=CD.
∵∠BAE=∠CDE,
∴∠BAE=∠F.
∴AB=BF,
又∵BF=CD,
∴AB=CD.
在△DEC和△BEF中
BE=CE
∠BEF=∠CED
EF=DE
,
∴△DEC≌△BEF.
∴∠F=∠CDE,BF=CD.
∵∠BAE=∠CDE,
∴∠BAE=∠F.
∴AB=BF,
又∵BF=CD,
∴AB=CD.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询