已知,椭圆C过点A(1,3/2),两个焦点是(1,0)(1,0)
(1)求椭圆C的方程(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与直线AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个值...
(1)求椭圆C的方程
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与直线AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个值 展开
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与直线AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个值 展开
展开全部
1、可设方程为:x^2/a^2+y^2/(a^2-1)=1,将A(1,3/2)代入得:1/a^2+9/4(a^2-1)=1
(4a^2-1)(a^2-4)=0,a=2(舍去a=1/2),椭圆方程为:x^2/4+y^2/3=1
2、设AE的斜率为t,则AF的斜率为-t,则有:AE:y=t(x-1)+3/2;AF:y=-t(x-1)+3/2,代入椭圆方程得:
AE:(4t^2+3)x^2-4t(2t-3)x+4t^2-12t-3=0,x=(4t^2-12t-3)/(4t^2+3),y=t[(4t^2-12t-3)/ (4t^2+3)-1]+3/2=(-12t^2-6t)/(4t^2+3)+3/2;
AF:(4t^2+3)x^2-4t(2t+3)x+4t^2+12t-3=0,x=(4t^2+12t-3)/(4t^2+3),y=-t[(4t^2+12t-3)/ (4t^2+3)-1]+3/2=(-12t^2+6t)/(4t^2+3)+3/2;
EF的斜率k=【(-12t^2-6t)/(4t^2+3)-(-12t^2+6t)/(4t^2+3)】/【(4t^2-12t-3)/(4t^2+3)-(4t^2+12t-3)/(4t^2+3)】=-12t/(-24t)=1/2
(4a^2-1)(a^2-4)=0,a=2(舍去a=1/2),椭圆方程为:x^2/4+y^2/3=1
2、设AE的斜率为t,则AF的斜率为-t,则有:AE:y=t(x-1)+3/2;AF:y=-t(x-1)+3/2,代入椭圆方程得:
AE:(4t^2+3)x^2-4t(2t-3)x+4t^2-12t-3=0,x=(4t^2-12t-3)/(4t^2+3),y=t[(4t^2-12t-3)/ (4t^2+3)-1]+3/2=(-12t^2-6t)/(4t^2+3)+3/2;
AF:(4t^2+3)x^2-4t(2t+3)x+4t^2+12t-3=0,x=(4t^2+12t-3)/(4t^2+3),y=-t[(4t^2+12t-3)/ (4t^2+3)-1]+3/2=(-12t^2+6t)/(4t^2+3)+3/2;
EF的斜率k=【(-12t^2-6t)/(4t^2+3)-(-12t^2+6t)/(4t^2+3)】/【(4t^2-12t-3)/(4t^2+3)-(4t^2+12t-3)/(4t^2+3)】=-12t/(-24t)=1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询