谁有FCM算法的源程序,谢谢!
1个回答
展开全部
我贴部分FCM的Matlab代码:
expo = options(1); % Exponent for U
max_iter = options(2); % Max. iteration
min_impro = options(3); % Min. improvement
display = options(4); % Display info or not
obj_fcn = zeros(max_iter, 1); % Array for objective function
U = initfcm(cluster_n, data_n); % Initial fuzzy partition
% Main loop
for i = 1:max_iter,
[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo);
if display,
fprintf('Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i));
end
% check termination condition
if i > 1,
if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro, break; end,
end
end
其中
U = initfcm(cluster_n, data_n); % Initial fuzzy partition
这个就是初始化划分矩阵,随机产生一个隶属度矩阵,
代码如下:
U = rand(cluster_n, data_n);
col_sum = sum(U);
U = U./col_sum(ones(cluster_n, 1), :);
上面就是它初始化的一个隶属度矩阵,
cluster_n行,data_n列。
即一列中从上到下表示每个样本隶属与每一类的隶属度。
然后在算法中不断迭代,
最后得到的还是如此大的一个矩阵,代表每个样本隶属与每一类的隶属度
然后选择最大的那个就是,它就属于那一类。
expo = options(1); % Exponent for U
max_iter = options(2); % Max. iteration
min_impro = options(3); % Min. improvement
display = options(4); % Display info or not
obj_fcn = zeros(max_iter, 1); % Array for objective function
U = initfcm(cluster_n, data_n); % Initial fuzzy partition
% Main loop
for i = 1:max_iter,
[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo);
if display,
fprintf('Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i));
end
% check termination condition
if i > 1,
if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro, break; end,
end
end
其中
U = initfcm(cluster_n, data_n); % Initial fuzzy partition
这个就是初始化划分矩阵,随机产生一个隶属度矩阵,
代码如下:
U = rand(cluster_n, data_n);
col_sum = sum(U);
U = U./col_sum(ones(cluster_n, 1), :);
上面就是它初始化的一个隶属度矩阵,
cluster_n行,data_n列。
即一列中从上到下表示每个样本隶属与每一类的隶属度。
然后在算法中不断迭代,
最后得到的还是如此大的一个矩阵,代表每个样本隶属与每一类的隶属度
然后选择最大的那个就是,它就属于那一类。
AiPPT
2024-09-19 广告
2024-09-19 广告
随着AI技术的飞速发展,如今市面上涌现了许多实用易操作的AI生成工具1、简介:AiPPT: 这款AI工具智能理解用户输入的主题,提供“AI智能生成”和“导入本地大纲”的选项,生成的PPT内容丰富多样,可自由编辑和添加元素,图表类型包括柱状图...
点击进入详情页
本回答由AiPPT提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询