如图,设抛物线y=ax2+bx-2与X轴交于两个不同的点
如图,设抛物线y=ax2+bx-2与X轴交于两个不同的点A(-1,0),B(m,0),与Y轴交于点C(0,-2),且∠ACB=90°。(1)求m的值和抛物线的解析式。(2...
如图,设抛物线y=ax2+bx-2与X轴交于两个不同的点A(-1,0),B(m,0),与Y轴交于点C(0,-2),且∠ACB=90°。
(1)求m 的值和抛物线的解析式。
(2)已知D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E,若点P在x轴上,以P、B、D为顶点的三角形与△AEB相似,求点P的坐标
(3)在(2)的条件下,三角形BDP外接圆的半径等于____
谢谢啦,请写得清楚明白些 展开
(1)求m 的值和抛物线的解析式。
(2)已知D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E,若点P在x轴上,以P、B、D为顶点的三角形与△AEB相似,求点P的坐标
(3)在(2)的条件下,三角形BDP外接圆的半径等于____
谢谢啦,请写得清楚明白些 展开
1个回答
展开全部
1)
x=0,y=-2,c(0,-2)
∠ACB=90° ,AC^2+BC^2=AB^2
1+4+m^2+4=(m+1)^2
m的值m=4,B(4,0)
a-b-2=0,16a+4b-2=0
抛物线的解析式a=1/2,b=-3/2
y=x^2/2-3x/2-2
2)
D(1,n),n=1/2-3/2-2=-3
D(1,-3),x+1=x^2/2-3x/2-2,x=-1,x=6
E(6,7)
直线BD、AE斜率K1,K2
K1=(0+3)/(4-2)=1,K2=(7-0)/(6+1)=1
K1=K2=1
所以:DB平行AE
相似所以:PD平行BE
BE斜率K=7/2
直线PD:Y=7X/2-13/2
点P在X轴P(13/7,0)
3)
D(1,-3),B(4,0),P(13/7,0),
DB=3√2,sin∠PBD=3/3√2=√2/2
PD=3√53/7
外接圆半径R:
R=PD/(2sin∠PBD)=3√106/14
x=0,y=-2,c(0,-2)
∠ACB=90° ,AC^2+BC^2=AB^2
1+4+m^2+4=(m+1)^2
m的值m=4,B(4,0)
a-b-2=0,16a+4b-2=0
抛物线的解析式a=1/2,b=-3/2
y=x^2/2-3x/2-2
2)
D(1,n),n=1/2-3/2-2=-3
D(1,-3),x+1=x^2/2-3x/2-2,x=-1,x=6
E(6,7)
直线BD、AE斜率K1,K2
K1=(0+3)/(4-2)=1,K2=(7-0)/(6+1)=1
K1=K2=1
所以:DB平行AE
相似所以:PD平行BE
BE斜率K=7/2
直线PD:Y=7X/2-13/2
点P在X轴P(13/7,0)
3)
D(1,-3),B(4,0),P(13/7,0),
DB=3√2,sin∠PBD=3/3√2=√2/2
PD=3√53/7
外接圆半径R:
R=PD/(2sin∠PBD)=3√106/14
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询